24/7 Space News
TIME AND SPACE
Landmark quantum breakthrough paves way to unravel deepest mysteries of universe
Image illustrating traversable local wormhole. Space is represented horizontally. Time runs vertically, upwards. The two quantum objects, one on either side, start off at the bottom. The complex quantum object to be counterported is the one on the right. As time elapses, the local wormhole gradually folds, then unfolds, space-allowing the object on the right to be reconstituted across. The saturation of the colour red between the two objects represents the extent to which space is folded. The orange and the green vertical lines, corresponding to two local journeys in observable spacetime, indicate that no detectable information carriers were exchanged.
ADVERTISEMENT
     
Landmark quantum breakthrough paves way to unravel deepest mysteries of universe
by Staff Writers
Bristol UK (SPX) Mar 14, 2023

One of the first practical applications of the much-hyped but little-used quantum computing technology is now within reach, thanks to a unique approach that sidesteps the major problem of scaling up such prototypes.

The invention, by a University of Bristol physicist, who gave it the name 'counterportation', provides the first-ever practical blueprint for creating in the lab a wormhole that verifiably bridges space, as a probe into the inner workings of the universe.

By deploying a novel computing scheme, revealed in the journal Quantum Science and Technology, which harnesses the basic laws of physics, a small object can be reconstituted across space without any particles crossing. Among other things, it provides a 'smoking gun' for the existence of a physical reality underpinning our most accurate description of the world.

Study author Hatim Salih, Honorary Research Fellow at the university's Quantum Engineering Technology (QET) Labs, and co-founder of the start-up DotQuantum, said: "This is a milestone we have been working towards for a bunch of years. It provides a theoretical as well as practical framework for exploring afresh enduring puzzles about the universe, such as the true nature of spacetime."

The need for detectable information carriers travelling through when we communicate has been a deeply ingrained assumption among scientists, for instance a stream of photons crossing an optical fibre, or through the air, allowing people to read this text. Or, indeed, the myriad neural signals bouncing around the brain when doing so.

This holds true even for quantum teleportation, which, Star Trek aside, transfers complete information about a small object, allowing it to be reconstituted elsewhere, so it is indistinguishable in any meaningful way from the original, which disintegrates. The latter ensures a fundamental limit preventing perfect copying. Notably, the recent simulation of a wormhole on Google's Sycamore processor is essentially a teleportation experiment.

Hatim said: "Here's the sharp distinction. While counterportation achieves the end goal of teleportation, namely disembodied transport, it remarkably does so without any detectable information carriers travelling across."

Wormholes were popularised by the mega-hit movie Interstellar, which included physicist and Nobel laureate Kip Thorne among its crew. But they first came to light about a century ago as quirky solutions to Einstein's gravity equation, as shortcuts in the fabric of spacetime. The defining task of a traversable wormhole, however, can be neatly abstracted as making space traversable disjunctly; in other words, in the absence of any journey across observable space outside the wormhole.

The pioneering research, fittingly completed to Interstellar's spine-tingling background music, sets out a way to carry this task out.

"If counterportation is to be realised, an entirely new type of quantum computer has to be built: an exchange-free one, where communicating parties exchange no particles," Hatim said.

"By contrast to large-scale quantum computers that promise remarkable speed-ups, which no one yet knows how to build, the promise of exchange-free quantum computers of even the smallest scale is to make seemingly impossible tasks - such as counterportation - possible, by incorporating space in a fundamental way alongside time."

Plans are now in progress, in collaboration with leading UK quantum experts in Bristol, Oxford and York, to physically build this otherworldly-sounding wormhole in the lab.

"The goal in the near future is to physically build such a wormwhole in the lab, which can then be used as a testbed for rival physical theories, even ones of quantum gravity," Hatim added.

"This work will be in the spirit of the multi-billion ventures that exist to witness new physical phenomena, like the Laser Interferometer Gravitational-Wave Observatory (LIGO) and the European Organisation for Nuclear Research (CERN), but at a fraction of the resources. Our hope is to ultimately provide remote access to local wormholes for physicists, physics hobbyists, and enthusiasts to explore fundamental questions about the universe, including the existence of higher dimensions."

Tim Spiller, Professor of Quantum Information Technologies at the University of York and Director of the Quantum Communications Hub of the UK National Quantum Technologies Programme said: "Quantum theory continues to inspire and astound us. Hatim's latest work on counterportation provides another example of this, with the added bonus of a pathway towards experimental demonstration."

John Rarity, Professor of Optical Communication Systems at the University of Bristol, said: "We experience a classical world which is actually built from quantum objects. The proposed experiment can reveal this underlying quantum nature showing that entirely separate quantum particles can be correlated without ever interacting. This correlation at a distance can then be used to transport quantum information (qbits) from one location to another without a particle having to traverse the space, creating what could be called a traversable wormhole."

Research Report:From counterportation to local wormholes

Related Links
University of Bristol
Understanding Time and Space

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
TIME AND SPACE
It's a weird, weird quantum world
Boston MA (SPX) Mar 13, 2023
In 1994, as Professor Peter Shor PhD '85 tells it, internal seminars at AT&T Bell Labs were lively affairs. The audience of physicists was an active and inquisitive bunch, often pelting speakers with questions throughout their talks. Shor, who worked at Bell Labs at the time, remembers several occasions when a speaker couldn't get past their third slide, as they attempted to address a rapid line of questioning before their time was up. That year, when Shor took his turn to present an algorithm he ... read more

ADVERTISEMENT
ADVERTISEMENT
TIME AND SPACE
SpaceX cargo resupply mission CRS-27 scheduled for launch Tuesday

Virgin Orbit suspends operations, in wake of failed orbital launch

NASA SpaceX Crew-5 splashes down after 5-month mission

China to revamp science, tech in face of foreign 'suppression'

TIME AND SPACE
SpaceX launches Cargo Dragon carrying supplies and experiments to ISS

Rocket Lab claims 'mission success' after deploying 2 commercial satellites into orbit

Arianespace inks deal to launch at least two Vega-C rockets

Private firm to launch maiden rocket flight in Spain

TIME AND SPACE
Engineers keep an eye on fuel supply of NASA's oldest Mars orbiter

ExoMars rover testing moves ahead and deep down

ExoMars: Back on track for the Red Planet

Building on Luna and Mars with StarCrete the double stength concrete

TIME AND SPACE
China's Shenzhou-15 astronauts to return in June

China's space technology institute sees launches of 400 spacecraft

Shenzhou XV crew takes second spacewalk

China conducts ignition test in Mengtian space lab module

TIME AND SPACE
LeoLabs expands space safety coverage with new site in Argentina.

Spacetime will orchestrate LEO network for Rivada constellation

HawkEye 360's latest satellite cluster begins operation

SatixFy and Kythera Space solutions partner to deliver advanced payload solutions for LEO constellations

TIME AND SPACE
Antenova's tiny GNSS module with integrated antenna, high precision and low power

Ball Aerospace prototype payload to provide on-orbit data processing

Student-built satellite uses 'beach ball' for an antenna

Airbus partners with Kythera for OneSat mission sizing software

TIME AND SPACE
Rutgers scientists identify substance that may have sparked life on earth

DLR Gottingen helps in the search for signs of life in space

CHEOPS mission extended

How do microbes live off light

TIME AND SPACE
Inspiring mocktail menu served up by Space Juice winners

Study finds ocean currents may affect rotation of Europa's icy crust

New Horizons team discusses discoveries from the Kuiper Belt

New Horizons team adds AI to Kuiper Belt Object search

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.