24/7 Space News
ENERGY TECH
Lab data confirm potential of geothermal's holy grail: superdeep, superhot rock as important renewable energy source
illustration only
Lab data confirm potential of geothermal's holy grail: superdeep, superhot rock as important renewable energy source
by Montserrat Capellas Espuny for ESRF News
Paris, France (SPX) Oct 11, 2024

New laboratory data confirm the potential for geothermal's holy grail: tapping into the superhot, superdeep rock miles below our feet, which could create a clean, renewable energy source capable of replacing a significant amount of the fossil fuels associated with global warming. The data, reported in the journal Nature Communications, are among the first to show that such rock can form fractures that connect and make it more permeable. Until now, geologists were divided as to whether this was possible.

Such fractures are important because water passing through them can become supercritical, a steam-like phase that most people aren't familiar with. (Familiar phases are liquid water, ice, and the vapor that makes clouds.) Supercritical water, in turn, "can penetrate fractures faster and more easily and can carry far more energy per well to the surface - roughly five to ten times the energy produced by today's commercial geothermal wells", according to "Superhot Rock Geothermal, A Vision for Zero-Carbon Energy 'Everywhere,'" a 2021 report by the Clean Air Task Force.

The data also show that rock that fractures at superhot conditions can be ten times more permeable than rock that fractures at conditions closer to the Earth's surface, and can also deform more readily. Those factors could make this geothermal resource "much more economic," says Geoffrey Garrison, Vice President of Operations for Quaise Energy, one of the funders for the work. Quaise is working on a novel drilling technique for accessing superdeep, superhot rock.

A Geological Debate
Until now, geologists had been divided as to whether this superdeep, superhot resource can be tapped. Rock under such high pressures and temperatures - more than 375oC, or 707 oF - is ductile, or gooey, as opposed to a smashable stone from your backyard. As a result, some have argued that fractures can't be created. And if they can, will they stay open?

The current work, led by a team at the Ecole Polytechnique Federal de Lausanne (EPFL), confirms that fractures can indeed form in superhot, superdeep rock located near the brittle-to-ductile transition in the crust. The latter is where hard, brittle rock begins to transition into a material that's ductile, or more pliable.

"There are also lots of other data coming out of this work that will inform our approach to tapping the resource," Garrison says. For example, "how strong is the rock? How far do the fractures go? How many fractures can we create?"

"All of this will help us derisk the drilling involved, which is very expensive. You don't get a lot of chances. You don't get to drill a hole then, like hanging a picture, move it over if you've missed the best location."

"Exciting Finding"
Peter Massie is director of the Geothermal Energy Office at the Cascade Institute, which recently released a report with the Clean Air Task Force about drilling for superhot geothermal energy. Massie, who was not involved in the Nature Communications work, made the following comment about it on X:

"Exciting finding: extreme heat and pressure can help create better enhanced geothermal systems [EGS]. At very high temps, rocks become ductile (plasticky), which was expected to impede EGS. This supports [the] prospect of ultradeep, 'supercritical' geothermal with major boost in output."

The research was led by Associate Professor Marie Violay, head of the Laboratory of Experimental Rock Mechanics at EPFL. Says Violay:

"This work is exciting because it presents the first permeability measurements conducted during deformation at pressure and temperature conditions characteristic of deep supercritical geothermal reservoirs near the brittle-to-ductile transition in the crust.

"We have shown that the brittle-to-ductile transition is not a cutoff for fluid circulation in the crust, which is promising for the exploitation of deep geothermal reservoirs. There are very few in situ data available, and these are among the first experimental results that shed light on such extreme conditions."

Violay's coauthors of the Nature Communications paper are first author Gabriel G. Meyer and Ghassan Shahin, both of EPFL, and Benoit Cordonnier of the European Synchrotron Radiation Facility.

What's Happening?
The consistency of superhot, superdeep rock is similar to that of Silly Putty. "If you pull it slowly, it stretches out and becomes elastic. But if you pull a chunk of Silly Putty really quickly, it snaps. And that is brittle behavior," says Garrison.

In other words, he continues, "if you stress the rock slowly enough under these extreme conditions, it may stretch and not fracture. This work shows that rock will shatter under these conditions, but it needs to be stressed quickly to do so."

The research confirms theoretical work reported earlier this year in Geothermal Energy showing that the cracks that form create a dense "cloud of permeability" throughout the affected rock. This is in contrast to the much larger and fewer macroscopic fractures induced by the engineered geothermal systems (EGS) in use today, which operate closer to the surface and at much lower temperatures.

As a result, the simulations involved in the Geothermal Energy work predict that a superhot system can deliver five to ten times more power than typically produced today from EGS, and do so for up to two decades.

Unique Experimental Machine
Garrison notes that there are very few facilities in the world capable of making the measurements conducted at EPFL.

Says Violay, "The best part [of this research] was the development of a unique experimental machine capable of reproducing the pressure, temperature, and deformation conditions of deep supercritical reservoirs near the brittle-to-ductile transition. Additionally, we were able to combine these experimental results with in situ X-ray images obtained the ESRF (European Synchrotron Radiation Facility), offering a comprehensive view of the processes involved."

Research Report:Permeability partitioning through the brittle-to-ductile transition and its implications for supercritical geothermal reservoirs

Related Links
Quaise Energy
Powering The World in the 21st Century at Energy-Daily.com

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
ENERGY TECH
ManchesterU launches M4 wave energy converter in Australia
London, UK (SPX) Sep 27, 2024
The M4 wave energy converter, developed by Professor Peter Stansby at The University of Manchester, has been launched successfully in Albany, Australia. This innovative device is designed to harness ocean wave power to generate electricity, marking a major advancement in renewable energy technology. Led by Professor Christophe Gaudin and Dr. Hugh Wolgamot, with coordination by Dr. Wiebke Eberling from the University of Western Australia, the Albany M4 project aims to explore wave energy's potentia ... read more

ENERGY TECH
SpaceX Crew Dragon that will take Starliner astronauts home docks at ISS

SpaceX launches mission to return stranded astronauts

ISS Crew-9 will conduct research into genetics, cardiac health, and space farming

Voyager Space executes key Bishop Airlock operations in Starlab mission prep

ENERGY TECH
Vulcan rocket awaits Florida launch for certification test

Crew-9 Successfully Launched, Now En Route to ISS

Veteran Ventures Capital invests in Agile Space Industries

China launches eight satellites using Smart Dragon 3 rocket

ENERGY TECH
Crew completes simulated Mars Mission at JSC

Mars' missing atmosphere could be hiding in plain sight

Martian rocks shed light on planet's ancient climate

A Striped Surprise

ENERGY TECH
Xi emphasizes China's drive to lead in space exploration

China launches Yaogan 43B remote-sensing satellites from Xichang

Shenzhou-18 Crew Tests Fire Alarms and Conducts Medical Procedures in Space

Astronauts on Tiangong Space Station Complete Fire Safety Drill

ENERGY TECH
BlackSky prices $40M Public Offering of Common Stock

Vodafone and Intelsat Expand Satellite Connectivity for Remote Areas and Emergency Response

Sidus strengthens LizzieSat operations with Neuraspace partnership

Iridium approves $500M stock buyback, total program reaches $1.5B

ENERGY TECH
New molecules switch reversibly using light and heat

Fake AI history photos cloud the past

Ancient 3D paper art could help shape modern wireless tech

Ethiopia's 'korale' recyclers turn waste into money

ENERGY TECH
Exoplanet map reveals Neptunian Ridge separating planetary regions

This rocky planet around a white dwarf resembles Earth - 8 billion years from now

Astronomers catch a glimpse of a uniquely inflated and asymmetric exoplanet

Lab Findings Suggest Some Indicators of Life on Exoplanets May Be Misleading

ENERGY TECH
Technicians prep Europa Clipper for propellant loading

Volcanoes may help reveal interior heat on Jupiter moon

JunoCam identifies new volcanic feature on Io

Mystery of Trans-Neptunian Orbits Solved by Stellar Flyby

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.