. | . |
Investigations with neutrons settle scientific dispute about the structure of solid fluorine by Staff Writers Munich, Germany (SPX) Mar 28, 2019
In toothpaste, Teflon, LEDs and medications, it shows its sunny side - but elemental fluorine is extremely aggressive and highly toxic. Attempts to determine the crystal structure of solid fluorine using X-rays ended with explosions 50 years ago. A research team has now clarified the actual structure of the fluorine using neutrons from the Heinz Maier Leibnitz Research Neutron Source (FRM II). Fluorine is the most reactive chemical element and highly toxic. It is nonetheless widely deployed. In the first attempt to determine the atomic distances of solid fluorine in 1968, a research team in the United States used X-rays. A difficult task, because fluorine only becomes solid at about minus 220C. And already cooling down the aggressive element resulted in explosions. Nobel laureate Linus Pauling was sceptical about the results of the team and in 1970 proposed an alternative structural model - without delivering the experimental proof. For 50 years, no other chemist ventured to take on the delicate task. Using neutrons from the Heinz Maier-Leibnitz Research Neutron Source in Garching, scientists from the University of Marburg, the Technical University of Munich (TUM) and the Aalto University in Finland have now finally elucidated the structure.
Neutrons - the ideal probes For their investigations, the researchers implemented a special measuring setup to study fluorine at very low temperatures. To this end, they deployed materials that are particularly resistant to fluorine and ensure safe handling.
Application in LEDs, toothpaste and pharmaceuticals But fluorine is also an essential part of everyday life. Among other things, fluorides are used as additives to toothpaste. They are used in LED bulbs to turn the cold LED light into a warm white. Fluorine compounds are also added to many pharmaceuticals to increase their effectiveness.
Neutron measurements confirm the suspicions of the Nobel Prize winner
Research Report: "The Crystal Structures of alpha- and beta-F2 revisited"
Scientists squeeze catalysts inside host materials like a ship into a bottle London, UK (SPX) Mar 27, 2019 Scientists at Queen Mary University of London have found a way to place catalysts inside the tiniest pores of different host materials, a bit like when model ships are unfolded inside a bottle. When materials are confined like this on such a small scale, and without breaking the host, they behave differently from their bulk form, a change that scientists call the confinement effect. In the case of catalysts, which are materials that speed up chemical reactions, confinement may lead to higher activ ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |