. 24/7 Space News .
TIME AND SPACE
In Einstein's footsteps and beyond
by Leah Burrows
Boston MA (SPX) Apr 28, 2022

An illustration of a near-zero index metamaterial shows that when light travels through, it moves in a constant phase. (Credit: Second Bay Studios/Harvard SEAS)

In physics, as in life, it's always good to look at things from different perspectives.

Since the beginning of quantum physics, how light moves and interacts with matter around it has mostly been described and understood mathematically through the lens of its energy. In 1900, Max Planck used energy to explain how light is emitted by heated objects, a seminal study in the foundation of quantum mechanics. In 1905, Albert Einstein used energy when he introduced the concept of photon.

But light has another, equally important quality known as momentum. And, as it turns out, when you take momentum away, light starts behaving in really interesting ways.

An international team of physicists led by Michael Lobet, a research associate at the Harvard John A. Paulson School of Engineering and Applied Sciences (SEAS) and Eric Mazur, the Balkanski Professor of Physics and Applied Physics at SEAS, are re-examining the foundations of quantum physics from the perspective of momentum and exploring what happens when the momentum of light is reduced to zero.

Any object with mass and velocity has momentum - from atoms to bullets to asteroids - and momentum can be transferred from one object to another. A gun recoils when a bullet is fired because the momentum of the bullet is transferred to the gun. At the microscopic scale, an atom recoils when it emits light because of the acquired momentum of the photon. Atomic recoil, first described by Einstein when he was writing the quantum theory of radiation, is a fundamental phenomenon which governs light emission.

But a century after Planck and Einstein, a new class of metamaterials is raising questions regarding these fundamental phenomena. These metamaterials have a refractive index close to zero, meaning that when light travels through them, it doesn't travel like a wave in phases of crests and troughs. Instead, the wave is stretched out to infinity, creating a constant phase. When that happens, many of the typical processes of quantum mechanics disappear, including atomic recoil.

Why? It all goes back to momentum. In these so-called near-zero index materials, the wave momentum of light becomes zero and when the wave momentum is zero, odd things happen.

"Fundamental radiative processes are inhibited in three dimensional near-zero index materials," says Lobet, who is currently a lecturer at the University of Namur in Belgium. "We realized that the momentum recoil of an atom is forbidden in near-zero index materials and that no momentum transfer is allowed between the electromagnetic field and the atom."

If breaking one of Einstein's rules wasn't enough, the researchers also broke perhaps the most well-known experiment in quantum physics - Young's double-slit experiment. This experiment is used in classrooms across the globe to demonstrate the particle-wave duality in quantum physics - showing that light can display characteristics of both waves and particles.

In a typical material, light passing through two slits produces two coherent sources of waves that interfere to form a bright spot in the center of the screen with a pattern of light and dark fringes on either side, known as diffraction fringes.

"When we modeled and numerically computed Young's double-slit experiment, it turned out that the diffraction fringes vanished when the refractive index was lowered," said co-author Larissa Vertchenko, of the Technical University of Denmark.

"As it can be seen, this work interrogates fundamental laws of quantum mechanics and probes the limits of wave-corpuscle duality," said co-author Inigo Liberal, of the Public University of Navarre in Pamplona, Spain.

While some fundamental processes are inhibited in near-zero refractive index materials, others are enhanced. Take another famous quantum phenomenon - Heisenberg's uncertainty principle, more accurately known in physics as the Heisenberg inequality. This principle states that you cannot know both the position and speed of a particle with perfect accuracy and the more you know about one, the less you know about the other. But, in near-zero index materials, you know with 100% certainty that the momentum of a particle is zero, which means you have absolutely no idea where in the material the particle is at any given moment.

"This material would make a really poor microscope, but it does enable to cloak objects quite perfectly," Lobet said. "In some way, objects become invisible."

"These new theoretical results shed new light on near-zero refractive index photonics from a momentum perspective," said Mazur. "It provides insights in the understanding of light-matter interactions in systems with a low- refraction index, which can be useful for lasing and quantum optics applications."

The research could also shed light on other applications, including quantum computing, light sources that emit a single photon at a time, the lossless propagation of light through a waveguide and more.

The team next aims to revisit other foundational quantum experiments in these materials from a momentum perspective. After all, even though Einstein didn't predict near-zero refractive index materials, he did stress the importance of momentum. In his seminal 1916 paper on fundamental radiative processes, Einstein insisted that, from a theoretical point of view, energy and momentum "should be considered on a completely equal footing since energy and momentum are linked in the closest possible way."

"As physicists, it's a dream to follow in the footsteps of giants like Einstein and push their ideas further," said Lobet. "We hope that we can provide a new tool that physicists can use and a new perspective, which might help us understand these fundamental processes and develop new applications."

The research is published in Nature Light Science and Applications.

Research Report:Momentum considerations inside near-zero index materials


Related Links
Harvard John A. Paulson School of Engineering and Applied Sciences
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
CERN restarts Large Hadron Collider in quest to unlock origins of the universe
Washington DC (UPI) Apr 22, 2021
Scientists at the European Council for Nuclear Research restarted the Large Hadron Collider on Friday, more than three years after the world's most powerful particle accelerator was paused for maintenance and upgrades. The first beams of protons began spinning in opposite directions, marking the start of what is expected to be four years of data gathering in the search for dark matter, according to CERN. The collider works by smashing particles together to allow scientists to study what' ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
NASA chooses small businesses to continue exploration tech development

NASA's Crew-4 docks at ISS

UAE to send astronaut on six-month ISS mission

NASA Chief expects cooperation with Russia on ISS to continue

TIME AND SPACE
Vega-C: Launcher integration begins for inaugural flight VV21

AFRL, ABL Space Systems demonstrate rapid operation of launch systems

Rocket Lab pushes back attempt of mid-air booster catch to Sunday

SpaceX launches more Starlink satellites from Florida

TIME AND SPACE
Ingenuity helicopter captures images of its parachute on Mars

Enigmatic Rock Layer in Mars' Gale Crater Awaits Measurements by the Curiosity Rover

Revenge of the Wheels Sol 3458

Carbon dioxide glaciers are moving at the Martian south pole

TIME AND SPACE
China opens Shenzhou-13 return capsule

NASA Chief slams China's refusal to cooperate with US

Xi Focus: Invigorating China's space exploration dream

Tianzhou-3 docks with Tianhe's front docking port

TIME AND SPACE
Nanoavionics builds first nanosatellite for Promethee's EO constellation

Planet unveils details about Pelican Constellation

AST SpaceMobile announces collaboration with Globe Telecom

Inmarsat CEO issues warning over space sustainability with unmanaged expansion

TIME AND SPACE
NASA selects USNC for ultra-high temperature component testing facility

AFRL is developing green power for satellites

Multi-energy electron device creates space environment in the lab

Researchers create exotic magnetic structures with laser light

TIME AND SPACE
Origin of complex cells started without oxygen

The instability at the beginning of the solar system

Scientists study microorganisms on Earth to gain insight into life on other planets

Discovery of 30 exocomets in a young planetary system

TIME AND SPACE
Juno captures moon shadow on Jupiter

Greenland Ice, Jupiter Moon Share Similar Feature

Search for life on Jupiter moon Europa bolstered by new study

Abundant features on Europa bodes well for search for extraterrestrial life









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.