. 24/7 Space News .
STELLAR CHEMISTRY
Hunting for dark matter in the smallest galaxies in the universe
by Staff Writers
Surrey UK (SPX) Apr 10, 2018

On the left-hand side, we see the results of a computer simulation in which Eridanus II resides within a dense dark matter 'halo', as expected in the standard cosmological model. The star cluster (in green) rapidly dissolves in this model. We can, therefore, rule out this model since we see an old surviving star cluster in Eridanus II today. On the right-hand side, we see a similar computer simulation in which Eridanus II resides in a much lower density dark matter 'halo'. In this model, the star cluster not only survives but it grows to a size that matches the observed star cluster in Eridanus II, marked by the green circle in the middle.

Astrophysicists from the University of Surrey and the University of Edinburgh have created a new method to measure the amount of dark matter at the centre of tiny "dwarf" galaxies.

Dark matter makes up most of the mass of the Universe, yet it remains elusive. Depending on its properties, it can be densely concentrated at the centres of galaxies, or more smoothly distributed over larger scales. By comparing the distribution of dark matter in galaxies with detailed models, researchers can test or rule out different dark matter candidates.

The tightest constraints on dark matter come from the very smallest galaxies in the Universe, "dwarf galaxies". The smallest of these contain just a few thousand or tens of thousands of stars - so-called "ultra-faint" dwarfs.

Such tiny galaxies, found orbiting close to the Milky Way, are made up almost entirely of dark matter. If the distribution of dark matter in these tiny galaxies could be mapped out it could provide new and exciting information about its nature. However, being entirely devoid of gas and containing very few stars, until recently there was no viable method for making this measurement.

In a study published by the Monthly Notices of the Royal Astronomical Society (MNRAS), a team of scientists from the University of Surrey have developed a new method to calculate the inner dark matter density of dwarf galaxies, even if they have no gas and very few stars. The key to the method is to make use of one or more dense star clusters orbiting close to the centre of the dwarf.

Star clusters are gravitationally bound collections of stars that orbit inside galaxies. Unlike galaxies, star clusters are so dense that their stars gravitationally scatter from one another causing them to slowly expand.

The research team made the key new insight when they realised that the rate of this expansion depends on the gravitational field that the star cluster orbits in and, therefore, on the distribution of dark matter in the host galaxy.

The team used a large suite of computer simulations to show how the structure of star clusters is sensitive to whether dark matter is densely packed at the centre of galaxies, or more smoothly distributed. The team then applied their method to the recently discovered "ultra-faint" dwarf galaxy, Eridanus II, finding much less dark matter in its centre than many models would have predicted.

Dr Filippo Contenta from the University of Surrey and lead author of the study said: "We have developed a new tool to uncover the nature of dark matter and already the results are exciting. Eridanus II, one of the smallest galaxies known, has less dark matter in its centre than expected. If similar results are found for a larger sample of galaxies, this could have wide-ranging implications for the nature of dark matter."

Professor Mark Gieles, Professor of Astrophysics at the University of Surrey and Principal Investigator of the European Research Council (ERC) project that funded the project, added: "We started this ERC project with the hope that we could use star clusters to learn about dark matter so it is very exciting that it worked."

Professor Justin Read, a co-author on the study from the University of Surrey, added: "It is challenging to understand our results for Eridanus II if dark matter comprises a weakly interacting 'cold' particle - the currently-favoured model for dark matter.

One possibility is that the dark matter at the very centre of Eridanus II was "heated up" by violent star formation, as suggested by some recent numerical models. More tantalising, however, is the possibility is that dark matter is more complex than we have assumed to date."

Dr Jorge Penarrubia from the University of Edinburgh's School of Physics and Astronomy said: "These findings lend a fascinating insight into the distribution of dark matter in the most dark matter dominated galaxies in the Universe, and there is great potential for what this new method might uncover in the future."

Research paper


Related Links
University of Surrey
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Scientists stunned by discovery of galaxy without dark matter
Washington (UPI) Mar 28, 2018
Most galaxies are defined by their dark matter. To study dark matter - and affirm its existence - astronomers study galaxies. Now, for the first time, scientists have found a galaxy without dark matter - NGC1052-DF2's dark matter is missing. When astronomers first found the dark matter-less galaxy, they were stunned. "For decades, we thought that galaxies start their lives as blobs of dark matter," Pieter van Dokkum of Yale University said in a news release. "After that everything els ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
'Ideas' conference to grapple with dark side of tech

Virgin Galactic completes first rocket-powered Unity space craft launch

Cargo-packed Dragon arrives at space station

SpaceX Dragon arrives at ISS with material samples and new testing facility

STELLAR CHEMISTRY
Rocket Lab 'Its Business Time' launch window to open 20 April 2018 NZT

Student Launch Teams Rendezvous in Huntsville for NASA Competition

New research payloads heading to ISS on SpaceX Resupply Mission

SpaceX launches cargo to space station using recycled rocket, spaceship

STELLAR CHEMISTRY
NASA's Idea to Send Swarm of Robots to Mars

"Bungee Jumping": Russian Scientists Suggest Using Ropes to Ship Cargo From Mars

Opportunity Completes In-Situ Work on 'Aguas Calientes'

NASA Ready to Study Heart of Mars

STELLAR CHEMISTRY
China's 'space dream': A Long March to the moon

China says Earth-bound space lab to offer 'splendid' show

Tiangong-1 expected to burn up on reentering atmosphere

Earth-bound Chinese spacelab plunging to fiery end

STELLAR CHEMISTRY
Storm hunter launched to International Space Station

SpaceX says Iridium satellite payload deployed

Spacecom selects SSL to build AMOS-8 comsat with advanced capabilities

Relativity Space raises 35M in Series B funding

STELLAR CHEMISTRY
CEAS Alumnus Develops New Heat Pipe to Support Spacecraft

Space Maid: Robot Harpoon and Net System to Attempt Space Cleanup

The Problem With Space Junk is We Don't Know Where Most Objects Are

Invisibility material created by UCI engineers

STELLAR CHEMISTRY
X-rays could sterilise alien planets in otherwise habitable zones

From car engines to exoplanets

Winning Exoplanet Rocket Sticker Selected

Paucity of phosphorus hints at precarious path for extraterrestrial life

STELLAR CHEMISTRY
SSL to provide of critical capabilities for Europa Flyby Mission

Jupiter's turmoil more than skin deep: researchers

New Horizons Chooses Nickname for 'Ultimate' Flyby Target

Jupiter's Great Red Spot getting taller as it shrinks









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.