. 24/7 Space News .
STELLAR CHEMISTRY
Hubble finds spiraling stars, providing window into early universe
by Agnecy Writers
Baltimore MD (SPX) Sep 09, 2022

The massive star cluster NGC 346, located in the Small Magellanic Cloud, has long intrigued astronomers with its unusual shape. Now researchers using two separate methods have determined that this shape is partly due to stars and gas spiraling into the center of this cluster in a river-like motion. The red spiral superimposed on NGC 346 traces the movement of stars and gas toward the center. Scientists say this spiraling motion is the most efficient way to feed star formation from the outside toward the center of the cluster.

Nature likes spirals - from the whirlpool of a hurricane, to pinwheel-shaped protoplanetary disks around newborn stars, to the vast realms of spiral galaxies across our universe.

Now astronomers are bemused to find young stars that are spiraling into the center of a massive cluster of stars in the Small Magellanic Cloud, a satellite galaxy of the Milky Way.

The outer arm of the spiral in this huge, oddly shaped stellar nursery called NGC 346 may be feeding star formation in a river-like motion of gas and stars. This is an efficient way to fuel star birth, researchers say.

The Small Magellanic Cloud has a simpler chemical composition than the Milky Way, making it similar to the galaxies found in the younger universe, when heavier elements were more scarce. Because of this, the stars in the Small Magellanic Cloud burn hotter and so run out of their fuel faster than in our Milky Way.

Though a proxy for the early universe, at 200,000 light-years away the Small Magellanic Cloud is also one of our closest galactic neighbors.

Learning how stars form in the Small Magellanic Cloud offers a new twist on how a firestorm of star birth may have occurred early in the universe's history, when it was undergoing a "baby boom" about 2 to 3 billion years after the big bang (the universe is now 13.8 billion years old).

The new results find that the process of star formation there is similar to that in our own Milky Way.

Only 150 light-years in diameter, NGC 346 boasts the mass of 50,000 Suns. Its intriguing shape and rapid star formation rate has puzzled astronomers. It took the combined power of NASA's Hubble Space Telescope and the European Southern Observatory's Very Large Telescope (VLT) to unravel the behavior of this mysterious-looking stellar nesting ground.

"Stars are the machines that sculpt the universe. We would not have life without stars, and yet we don't fully understand how they form," explained study leader Elena Sabbi of the Space Telescope Science Institute in Baltimore. "We have several models that make predictions, and some of these predictions are contradictory. We want to determine what is regulating the process of star formation, because these are the laws that we need to also understand what we see in the early universe."

Researchers determined the motion of the stars in NGC 346 in two different ways. Using Hubble, Sabbi and her team measured the changes of the stars' positions over 11 years. The stars in this region are moving at an average velocity of 2,000 miles per hour, which means that in 11 years they move 200 million miles. This is about 2 times the distance between the Sun and the Earth.

But this cluster is relatively far away, inside a neighboring galaxy. This means the amount of observed motion is very small and therefore difficult to measure. These extraordinarily precise observations were possible only because of Hubble's exquisite resolution and high sensitivity. Also, Hubble's three-decade-long history of observations provides a baseline for astronomers to follow minute celestial motions over time.

The second team, led by Peter Zeidler of AURA/STScI for the European Space Agency, used the ground-based VLT's Multi Unit Spectroscopic Explorer (MUSE) instrument to measure radial velocity, which determines whether an object is approaching or receding from an observer.

"What was really amazing is that we used two completely different methods with different facilities and basically came to the same conclusion, independent of each other," said Zeidler. "With Hubble, you can see the stars, but with MUSE we can also see the gas motion in the third dimension, and it confirms the theory that everything is spiraling inwards."

But why a spiral?
"A spiral is really the good, natural way to feed star formation from the outside toward the center of the cluster," explained Zeidler. "It's the most efficient way that stars and gas fueling more star formation can move towards the center."

Half of the Hubble data for this study of NGC 346 is archival. The first observations were taken 11 years ago. They were recently repeated to trace the motion of the stars over time. Given the telescope's longevity, the Hubble data archive now contains more than 32 years of astronomical data powering unprecedented, long-term studies.

"The Hubble archive is really a gold mine," said Sabbi. "There are so many interesting star-forming regions that Hubble has observed over the years. Given that Hubble is performing so well, we can actually repeat these observations. This can really advance our understanding of star formation."

The teams' findings appear Sept. 8 in The Astrophysical Journal.

Observations with NASA's James Webb Space Telescope should be able to resolve lower-mass stars in the cluster, giving a more holistic view of the region. Over Webb's lifespan, astronomers will be able to repeat this experiment and measure the motion of the low-mass stars. They could then compare the high-mass stars and the low-mass stars to finally learn the full extent of the dynamics of this nursery.

Research Report:The Internal Proper Motion Kinematics of NGC 346: Past Formation and Future Evolution


Related Links
Hubble
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Massive stars' blasts hitting Orion's sword mapped in unprecedented detail
Maunakea HI (SPX) Sep 07, 2022
Astronomers using W. M. Keck Observatory on Hawaii Island have captured from Maunakea the most detailed and complete images ever taken of the zone where the famed constellation of Orion gets zapped with ultraviolet (UV) radiation from massive young stars. This irradiated neutral zone, called a Photo-Dissociation Region (PDR), is located in the Orion Bar within the Orion Nebula, an active star-forming site found in the middle of the "sword" hanging from Orion's "belt." When viewed with the naked ey ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Harris talks with space station astronauts, introduces new initiatives

Redwire and Sodern team up to market the Exquisite-Class Eagle Eye Star Tracker

ESA astronaut Samantha Cristoforetti becomes first European female ISS commander

LeoLabs awarded contract from US Dept of Commerce to support space traffic management prototype

STELLAR CHEMISTRY
SpaceX launches 34 more Starlink satellites, AST SpaceMobile satellite

Why do we always need to wait for launch windows to get a rocket to space

Uncrewed Blue Origin rocket crashes in setback for space tourism

Satellite mobility ecosystem provider, Morpheus Space raises $28M in Series A

STELLAR CHEMISTRY
Wind drives geology on Mars these days

Searching for Frost at Jezero Crater

Sols 3592-3593: Onwards

Martian rock-metal composite shows potential of 3D printing on Mars

STELLAR CHEMISTRY
Taikonauts enjoy 'home-grown' meal during Mid-Autumn Festival

Rocket to carry Mengtian space lab module arrives at launch site

Duo undertake 7-hour spacewalk

Chinese scientist advocates int'l cooperation in space science

STELLAR CHEMISTRY
OneWeb and Arianespace signed an agreement following the suspension of the launches

China launches Zhongxing-1E satellite

KTSAT contracts with Satconsult to provide expert oversight of satellite construction

Spaceflight signs with NewSpace India to launch Astrocast IoT satellite into orbit

STELLAR CHEMISTRY
Vestigo Aerospace raises $375K in seed funding to spur deorbit systems

NASA funds projects to study orbital debris, space sustainability

First Eurostar Neo satellite ready to ship

Ramon and Kythera partner to deliver autonomous communications payload solutions

STELLAR CHEMISTRY
It's a planet: new evidence of baby planet in the making

A thousand days of CHEOPS

Surprise finding suggests 'water worlds' are more common than we thought

Two new rocky worlds around an ultra-cool star

STELLAR CHEMISTRY
NASA's Juno Mission Reveals Jupiter's Complex Colors

The PI's Perspective: Extending Exploration and Making Distant Discoveries

Uranus to begin reversing path across the night sky on Wednesday

Underwater snow gives clues about Europa's icy shell









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.