. 24/7 Space News .
STELLAR CHEMISTRY
Hubble captures massive dead disk galaxy that challenges theories of galaxy evolution
by Staff Writers
Greenbelt MD (SPX) Jun 27, 2017


This artist's concept shows what the young, dead, disk galaxy MACS2129-1, right, would look like when compared with the Milky Way galaxy, left. Although three times as massive as the Milky Way, it is only half the size. MACS2129-1 is also spinning more than twice as fast as the Milky Way. Note that regions of Milky Way are blue from bursts of star formation, while the young, dead galaxy is yellow, signifying an older star population and no new star birth. Credit NASA, ESA, and Z. Levy (STScI)

By combining the power of a "natural lens" in space with the capability of NASA's Hubble Space Telescope, astronomers made a surprising discovery - the first example of a compact yet massive, fast-spinning, disk-shaped galaxy that stopped making stars only a few billion years after the big bang.

Finding such a galaxy early in the history of the universe challenges the current understanding of how massive galaxies form and evolve, say researchers.

When Hubble photographed the galaxy, astronomers expected to see a chaotic ball of stars formed through galaxies merging together. Instead, they saw evidence that the stars were born in a pancake-shaped disk.

This is the first direct observational evidence that at least some of the earliest so-called "dead" galaxies - where star formation stopped - somehow evolve from a Milky Way-shaped disk into the giant elliptical galaxies we see today.

This is a surprise because elliptical galaxies contain older stars, while spiral galaxies typically contain younger blue stars. At least some of these early "dead" disk galaxies must have gone through major makeovers. They not only changed their structure, but also the motions of their stars to make a shape of an elliptical galaxy.

"This new insight may force us to rethink the whole cosmological context of how galaxies burn out early on and evolve into local elliptical-shaped galaxies," said study leader Sune Toft of the Dark Cosmology Center at the Niels Bohr Institute, University of Copenhagen, Denmark. "Perhaps we have been blind to the fact that early "dead" galaxies could in fact be disks, simply because we haven't been able to resolve them."

Previous studies of distant dead galaxies have assumed that their structure is similar to the local elliptical galaxies they will evolve into. Confirming this assumption in principle requires more powerful space telescopes than are currently available.

However, through the phenomenon known as "gravitational lensing," a massive, foreground cluster of galaxies acts as a natural "zoom lens" in space by magnifying and stretching images of far more distant background galaxies. By joining this natural lens with the resolving power of Hubble, scientists were able to see into the center of the dead galaxy.

The remote galaxy is three times as massive as the Milky Way but only half the size. Rotational velocity measurements made with the European Southern Observatory's Very Large Telescope (VLT) showed that the disk galaxy is spinning more than twice as fast as the Milky Way.

Using archival data from the Cluster Lensing And Supernova survey with Hubble (CLASH), Toft and his team were able to determine the stellar mass, star-formation rate, and the ages of the stars.

Why this galaxy stopped forming stars is still unknown. It may be the result of an active galactic nucleus, where energy is gushing from a supermassive black hole. This energy inhibits star formation by heating the gas or expelling it from the galaxy. Or it may be the result of the cold gas streaming onto the galaxy being rapidly compressed and heated up, preventing it from cooling down into star-forming clouds in the galaxy's center.

But how do these young, massive, compact disks evolve into the elliptical galaxies we see in the present-day universe? "Probably through mergers," Toft said. "If these galaxies grow through merging with minor companions, and these minor companions come in large numbers and from all sorts of different angles onto the galaxy, this would eventually randomize the orbits of stars in the galaxies. You could also imagine major mergers. This would definitely also destroy the ordered motion of the stars."

The findings are published in the June 22 issue of the journal Nature. Toft and his team hope to use NASA's upcoming James Webb Space Telescope to look for a larger sample of such galaxies.

The Hubble Space Telescope is a project of international cooperation between NASA and ESA (European Space Agency). NASA's Goddard Space Flight Center in Greenbelt, Maryland, manages the telescope. The Space Telescope Science Institute (STScI) in Baltimore, Maryland, conducts Hubble science operations. STScI is operated for NASA by the Association of Universities for Research in Astronomy, Inc., in Washington, D.C.

The Very Large Telescope is a telescope facility operated by the European Southern Observatory on Cerro Paranal in the Atacama Desert of Northern Chile.

STELLAR CHEMISTRY
Hubble applauds waltzing dwarfs
Greenbelt MD (SPX) Jun 20, 2017
This seemingly unspectacular series of dots with varying distances between them actually shows the slow waltz of two brown dwarfs. The image is a stack of 12 images made over the course of three years with the NASA/ESA Hubble Space Telescope. Using high-precision astrometry, an Italian-led team of astronomers tracked the two components of the system as they moved both across the sky and around e ... read more

Related Links
Goddard Space Flight Center
Stellar Chemistry, The Universe And All Within It


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Return to the blue

NASA Selects Army Surgeon for Astronaut Training

Teachers doubt most students interested in subjects that promote space careers

Plants to feed Earth and beyond

STELLAR CHEMISTRY
Orbex reveals space rocket factory

Developing Landing Tech for Space

Amtrak to SpaceX Launch, Wifi hack, Spectacular trip, But where's my SatPhone...

SLS Core Stage Production Continues for Rocket's First Flight

STELLAR CHEMISTRY
Mars rover Opportunity on walkabout near crater rim

No One Under 20 Has Experienced a Day Without NASA at Mars

Mars Orbiter spots rover ascending Mount Sharp

Opportunity Straightens Wheel, Resumes Driving

STELLAR CHEMISTRY
China's cargo spacecraft completes second docking with space lab

China to launch four more probes before 2021

New broadcasting satellite fails to enter preset orbit

China launches remote-sensing micro-nano satellites

STELLAR CHEMISTRY
Gravitational wave mission selected, planet-hunting mission moves forward

Boeing Streamlining Defense and Space Unit to boost competitiveness

Trudeau under pressure to reject China bid for satellite firm

Jumpstart goes into alliance with major aerospace and defence group ADS

STELLAR CHEMISTRY
A new virtual approach to science in space

Universal stabilization

Helium droplets offer new precision to single-molecule laser measurement

Magnetic space tug could target dead satellites

STELLAR CHEMISTRY
Could a Dedicated Mission to Enceladus Detect Microbial Life There

NASA discovers 10 new Earth-size exoplanets

New branch in family tree of exoplanets discovered

Finding new Earths: PLATO spacecraft to be built

STELLAR CHEMISTRY
NASA Completes Study of Future 'Ice Giant' Mission Concepts

The curious case of the warped Kuiper Belt

King of the Gods: Jupiter Dated to Be Oldest Planet in the Solar System

New Horizons Team Digs into New Data on Next Flyby Target









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.