![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Kayla Wiles for Purdue News West Lafayette IN (SPX) Nov 18, 2022
When Brad Duerstock was 18, a spinal cord injury paralyzed his arms and legs, requiring him to use what control he had left in his hands to operate a power wheelchair. Throughout the more than 30 years since, Duerstock has seen smartphones, tablets and other types of technology get developed but not become usable for him or others with disabilities until years later. "It's always been a retroactive accommodation," he said. Duerstock, a professor of practice in industrial engineering and biomedical engineering at Purdue University, is working to change that for autonomous vehicles while the technology is still in its early days. The goal is that when these vehicles start to hit the road everywhere, they will be able to accommodate anyone who wants to use them. "It's really the wrong way to go to figure out how to adapt technology for a wheelchair user after already developing the technology," he said. "But if, instead, we consider, 'Hey, these are all the needs,' and then create some standards based on the minimum requirements of what the entire population needs, we can design the vehicle around those minimum standards."
Helping to establish standards on accessibility for autonomous vehicles These ideas are already becoming part of a major national conversation on how to make autonomous transportation more inclusive. Today (Nov. 17), Duerstock is a panelist for a webinar on accessibility and transportation hosted by Challenge.Gov, a program managed by the U.S. General Services Administration that crowdsources innovative solutions to critical issues through federally sponsored prize competitions. Duerstock will share how he and Pitts co-led a team to develop a design concept for helping the industry make autonomous vehicles accessible to people with disabilities. Their team's design concept won first place in a U.S. Department of Transportation competition this summer. The goal of the competition, called the Inclusive Design Challenge, is to spur the innovation needed to ensure that when autonomous transportation becomes widespread, it can accommodate people with any travel-limiting disability or mobility challenge. The winning design not only took into consideration the transportation challenges that people with disabilities face but also built on years of ideas generated among Duerstock, Pitts and BraunAbility, an Indiana-based company that has been designing and manufacturing vehicle accessibility solutions since 1972. Duerstock is among the first wheelchair users to have provided feedback on new product designs at the recently opened BraunAbility Global Innovation Lab in the Indianapolis area. "We've had the steady benefit of Professor Duerstock's expertise over the years," said Phill Bell, senior director of global corporate strategy for BraunAbility. "It's always good to have users come in and say, 'I don't like this interface' or 'I can't see where I'm backing up in my wheelchair.' As an engineer, Professor Duerstock can help steer us into the direction we should be headed." By the time Duerstock, Pitts and Bell had heard about the Inclusive Design Challenge, they had already identified autonomous vehicles as an opportunity to change the lives of people with disabilities and were working toward design solutions. "BraunAbility, with Purdue, thinks about accessibility from the get-go, and we can bring those considerations to the original equipment manufacturers while they're early in their design work," Bell said.
What an inclusive autonomous vehicle could look like Even though EASI RIDER isn't meant to be driven (it doesn't have a motor), the researchers showed that whether a person's disability is physical or sensory, they can successfully operate the vehicle's different controls all by themselves. EASI RIDER not only has a voice-activated, wheelchair-accessible ramp but also uses sensors to prevent inadvertent deployment of the ramp into obstacles when parked. A mechanism within EASI RIDER helps secure a wheelchair into the safest position during a ride. The prototype can accommodate up to two wheelchair users at once and has reconfigurable seats for riders who don't use wheelchairs. Cameras and sensors help passengers to better understand their surroundings in the vehicle and allow a remote operator to communicate with them in the case of emergency situations where the passengers might need assistance. Using their personal mobile phone or tablet, a traveler can control the vehicle's features such as interior lighting, the horn, headlights and entertainment. A screen inside of the vehicle would help a rider see the operator or access a map of their route if they are hearing-impaired or aren't able to use their hands to press buttons. "A lot of the features we included in the vehicle were intended to enable what we call a 'seamless travel experience,' which means that interacting with the vehicle is so natural that a person doesn't know they're interacting with it," said Pitts, who conducts research on how older adult populations interact with various autonomous systems. Pitts' research influenced the design of EASI RIDER's features. "Many of the same design solutions tested in my lab that aim to help aging adults better use digital technologies can also be used to support individuals with a range of disabilities," Pitts said. The EASI RIDER prototype also incorporated input from people with disabilities, including BraunAbility's Driving Force, through surveys, interviews and interactive demonstration sessions. EASI RIDER was built using parts and expertise from three other companies in addition to BraunAbility: Local Motors, Schaeffler, and Prehensile Technologies, a startup run by Duerstock and Purdue alumnus Jeffrey Ackerman. Prehensile Technologies specializes in using robotics and power sensor systems for wheelchair users, building on robotic desk and table concepts co-invented by Duerstock and patented through the Purdue Research Foundation Office of Technology Commercialization. Prehensile Technologies is a client of the Purdue Foundry, an entrepreneurship and commercialization hub whose professionals help Purdue innovators create startups. Even though EASI RIDER's parts are technology that has already been serving people with disabilities in different settings - the automotive controls that Schaeffler contributed, for example, enable wheelchair users to drive cars - how these parts were integrated together is what makes the design so innovative. "As we were finishing up the process of building EASI RIDER, I stepped inside of it and felt like I was standing in the future," Bell said. "I hadn't seen this sort of integration anywhere. This is the first iteration of what's coming down the line."
Thinking ahead on the future of transportation "We envision that our work will help build a more equitable transportation future and, in turn, promote a higher quality of life for people at different points along the ability spectrum," Pitts said. The team will also continue researching ways to develop technology that is universal for a wide range of disabilities. "Even though I have my own unique perspective, it's not everyone's perspective," Duerstock said. "It takes some depth in understanding of what are everyone's needs."
![]() ![]() Brussels under pressure to tighten car pollution rules Brussels (AFP) Nov 10, 2022 The European Commission on Thursday unveiled new proposals to tighten vehicle emissions standards, but immediately ran into fresh criticism that Brussels officials are too close to the car industry. European Union capitals have already agreed to ban sales of new petrol and diesel cars from 2035 as part of the 27-nation bloc's effort to build a carbon-neutral economy by 2050. For the motor lobby, the investment needed to transition to electric cars is already a high enough cost to impose on a sec ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |