. 24/7 Space News .
TIME AND SPACE
How molecules are rotating determines what happens when they collide with surfaces
by Staff Writers
Swansea UK (SPX) Jun 24, 2020

Two molecules approach a surface. The red one is rotating like a helicopter with respect to the surface and the green one is rotating like a cart wheel. Researchers at Swansea University have shown that the orientation of the molecule is important in determining what happens in the collision. The two molecules will interact differently with the surface atoms and electrons, experience different forces and have a different probability to scatter, adsorb or decompose.

What happens when a molecule collides with a surface? Researchers at Swansea University have shown that the orientation of the molecule as it moves - whether it is spinning like a helicopter blade or rolling like a cartwheel - is important in determining what happens in the collision.

The interaction of molecules with surfaces lies at the heart of many research fields and applications: plant fertilizers and chemicals, industrial catalysts, atmospheric chemical reactions on ice and dust particles, and even - in space - the processes through which a star is born.

A key question in the field of surface science is understanding whether a molecule, when it collides with a surface, will scatter back to the gas phase, adsorb on the surface, or react and break down into fragments.

One molecular property which can change the outcome of a collision is the rotational orientation of the molecule. However, the current understanding of this relation is very limited, as it is usually impossible to control or measure the orientation of a rotating molecule.

This is where the Swansea team's research comes in. The team, led by Professor Gil Alexandrowicz of Swansea University chemistry department, has developed a new type of experiment which enabled them to assess two things:

+ how the rotational orientation of the molecule, just before the collision, changes the scattering probabilities; and then

+ how the collision in turn changes the orientation of the molecules ejected back into the gas phase.

The experiments performed by Yosef Alkoby, a PhD student in the group, used magnetic fields to control the rotational quantum states of hydrogen molecules before and after colliding with the surface of a salt crystal.

A quantum mechanical simulation, developed by Dr. Helen Chadwick, was used to extract the scattering matrix from the measurement. This is a detailed descriptor which reveals exactly how rotation orientation affects the collision and how the collision changes the way the molecules rotate.

Until now, scattering matrices could only be estimated from theoretical calculations. In their new paper, the Swansea team have demonstrated for the first time an experimental determination of a scattering matrix, opening up new opportunities for studying and modelling molecule-surface interactions.

Key findings were:

+ The molecule-surface interaction potential of hydrogen with Lithium Fluoride depends strongly on the rotational orientation of the hydrogen molecules.

+ The scattering matrix obtained from the experiments confirms that collisions of hydrogen with Lithium Fluoride can change the rotational orientation of the molecule and provides the information needed to use this simple salt surface to rotationally orient hydrogen molecules.

+ The scattering matrix obtained from the experiment provides an extremely stringent benchmark which will guide the development of accurate theoretical models.

Professor Gil Alexandrowicz of Swansea University College of Science, lead researcher, said: "Our research reports a new type of molecule-surface collision experiment. We examined the orientation of a rotating ground-state molecule approaching a surface and how this changes the collision event.

Being able to model the outcome of a molecule-surface collision yields valuable insights for many fields of study. Yet even modelling the simplest molecule, H2, with a metal surface accurately still presents a significant challenge.

To develop accurate models, it is crucial to have results from fundamental surface-science experiments to benchmark theoretical descriptions against.

Our results provide a new and particularly sensitive bench mark for theory development, as the ability to calculate the collision and successfully reproduce the experimentally determined scattering matrix, requires a particularly accurate model for the molecule-surface interaction. "

Research paper


Related Links
Swansea University
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Exploring mass dependence in electron-hole clusters
Washington DC (SPX) Jun 19, 2020
In solid materials, when an electron changes position without another to fill its place, a positively charged 'hole' can appear which is attracted to the original electron. In more complex situations, the process can even result in stable clusters of multiple electrons and holes, whose behaviours all depend on each other. Strangely, the masses of each particle inside a cluster can be different to their masses when they are on their own. However, physicists aren't yet entirely clear how these mass ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
More Hands Make Light Work: Crew Dragon Duo Increases Science Tempo on Space Station

KBR wins $570M NASA contract for human spaceflight operations at Marshall

First space tourists will face big risks, as private companies gear up for paid suborbital flights

Kathy Lueders Selected to Lead NASA's Human Spaceflight Office

TIME AND SPACE
New US-UK agreement boosts UK's Spaceport plans

Rocket Lab launches Boston University's magnetosphere experiment

Putin: Russia is building defenses against hypersonic missiles

Arianespace Vega mission to perform Small Spacecraft Mission Service Proof of Concept flight

TIME AND SPACE
NASA's new Mars mission will take at least a decade to confirm life

The Launch Is Approaching for NASA's Next Mars Rover, Perseverance

Martian rover motors ahead

Airbus wins next study contract for Martian Sample Fetch Rover

TIME AND SPACE
Private investment fuels China commercial space sector growth

More details of China's space station unveiled

China space program targets July launch for Mars mission

More details of China's space station unveiled

TIME AND SPACE
Maxar to Build Four 1300-class Geostationary Communications Satellites for Intelsat

Northrop Grumman to build 2 C-band satellites for Intelsat

SpaceX launches 58 Starlink, 3 SkySat satellites from Florida

SpaceX, Amazon, OneWeb seek communications dominance in space

TIME AND SPACE
Graphene smart textiles developed for heat adaptive clothing

Quantum rings in the hold of laser light

Microsoft ends game streaming, teams up with Facebook

Synthetic materials mimic living creatures

TIME AND SPACE
As many as six billion Earth-like planets in our galaxy, according to new estimates

Research sheds new light on intelligent life existing across the galaxy

Astronomers discover how long-lived Peter Pan discs evolve

Plant pathogens can adapt to a variety of climates, hosts

TIME AND SPACE
Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze

New evidence of watery plumes on Jupiter's moon Europa

Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.