24/7 Space News
IRON AND ICE
High-fidelity simulation offers insight into 2013 Chelyabinsk meteor
Images from a 2D Spheral simulation showing the fragmentation of the Chelyabinsk bolide as it descends through the atmosphere. Image courtesy of LLNL Planetary Defense program.
ADVERTISEMENT
     
High-fidelity simulation offers insight into 2013 Chelyabinsk meteor
by Staff Writers
Livermore CA (SPX) Mar 13, 2023

On the morning of Feb. 15, 2013, a small asteroid exploded over Chelyabinsk, Russia, sending a loud shockwave and sonic boom across the region, damaging buildings and leaving around 1,200 people injured. The resulting meteor, with a diameter of approximate 20 meters (roughly the size of a six-story building), was one of the largest to be detected breaking up in the Earth's atmosphere in more than a hundred years.

A decade later, scientists from the Lawrence Livermore National Laboratory (LLNL) Planetary Defense program are releasing details of their research of the airburst event. The team spent the last three years modeling and simulating the atmospheric breakup of the Chelyabinsk meteor. Their study underscores the important role material strength and fracture played in the breakup dynamics.

Though various research organizations have studied the Chelyabinsk event, LLNL scientists were the first to simulate the Chelyabinsk meteor in full 3D with a material model based on research data from meteorites recovered from the event. Unlike historical meteoric events, the 2013 airburst event was recorded on cell phone and security camera video from multiple angles and a 500-kilogram fragment was recovered from Lake Chebarkul shortly after impact.

Their simulations - which closely matched actual observed events - suggest that the object could have been monolithic, or a single chunk of rock. If this was the case, researchers said, material strength and fracture played a significant role in the object's breakup and the resulting blast wave.

"This is something that can really only be captured with 3D simulation," said Jason Pearl, lead researcher on the project. "When you combine LLNL's specialized expertise in impact physics and hydrocodes with the Lab's state-of-the-art High Performance Computing capabilities, we were uniquely positioned to model and simulate the meteor in full 3D.

"Our research underlines the importance of using these types of high-fidelity models to understand asteroid airburst events," Pearl said. "A lot of smaller asteroids are rubble piles, or loosely bound collections of space gravel, so the possibility of a monolith is really interesting."

The research team used smoothed particle hydrodynamics (SPH), a computational method used for simulating the dynamics of solid mechanics and fluid flows, to examine the breakup mode of a Chelyabinsk-sized monolithic asteroid. In their simulations, the team found that the airburst occurs when major cracks form under tensile stress in the rear of the asteroid. The timescale of crack propagation toward the front of the asteroid controls the time at which the asteroid splits into smaller fragments while entering Earth's atmosphere. A family of fragments near the shock front then temporarily shields a region of fully-damaged material, until, at approximately 30 km above Earth's surface, the intact fragments separate and the debris is exposed to the free stream. Finally, the debris cloud is rapidly decelerated and the remaining fragments continue breaking up into smaller chunks of rock.

The breakup process is physics-rich, explained LLNL physicist Mike Owen. The coupling of the asteroid to the atmosphere depends on how much surface area it has. The greater the surface area, the more exposure the object has to heat, stress and pressure.

"As the asteroid enters the atmosphere, you start to have sort of a catastrophic failure," Owen said. "And it tends to compress in the direction of travel. It was like the asteroid was being squeezed in the direction of travel, breaking into distinct pieces that started to separate and break perpendicular to the direction of travel.

"All of a sudden, you've got a lot more material being exposed to the hypersonic interaction with the air, a lot more heat being dumped in, a lot more stress on it, which makes it break faster and you get sort of a cascading runaway process."

A better understanding of the breakup process can be used to build better statistical models of the risk posed by asteroids in the Chelyabinsk-size class. Understanding how these objects break up and transfer their energy into the atmosphere is crucial in providing a good estimate of the damage they may cause and can be used to better inform civil-defense strategies, said LLNL's Cody Raskin, a key contributor to the project.

A long-term goal of this research would be to use these models to assess the ground effects of a future meteor event, predicting the region that would potentially be impacted.

"Our ability to detect small asteroids has greatly improved in recent years," Raskin said. "If we can see a small asteroid approaching Earth in time, we could run our model and inform authorities or the potential risk, similar to a hurricane map. They could then take appropriate protective actions, such as evacuating residents or issuing shelter-in-place orders, ultimately saving lives."

Meteoric events are natural disasters and, just like any other natural disaster, we can do more to be prepared, Owen said.

"They are not high-probability events, but we shouldn't dismiss them as science fiction either."

Related Links
Lawrence Livermore National Laboratory
Asteroid and Comet Mission News, Science and Technology

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
IRON AND ICE
Meteorite crater discovered in French winery
Frankfurt, Germany (SPX) Feb 23, 2023
Countless meteorites have struck Earth in the past and shaped the history of our planet. It is assumed, for example, that meteorites brought with them a large part of its water. The extinction of the dinosaurs might also have been triggered by the impact of a very large meteorite. Meteorite craters which are still visible today are rare because most traces of the celestial bodies have long since disappeared again. This is due to erosion and shifting processes in Earth's crust, known as plate tecto ... read more

ADVERTISEMENT
ADVERTISEMENT
IRON AND ICE
SpaceX cargo resupply mission CRS-27 scheduled for launch Tuesday

Virgin Orbit suspends operations, in wake of failed orbital launch

NASA SpaceX Crew-5 splashes down after 5-month mission

China to revamp science, tech in face of foreign 'suppression'

IRON AND ICE
SpaceX launches Cargo Dragon carrying supplies and experiments to ISS

Rocket Lab claims 'mission success' after deploying 2 commercial satellites into orbit

Arianespace inks deal to launch at least two Vega-C rockets

Private firm to launch maiden rocket flight in Spain

IRON AND ICE
Engineers keep an eye on fuel supply of NASA's oldest Mars orbiter

ExoMars rover testing moves ahead and deep down

ExoMars: Back on track for the Red Planet

Building on Luna and Mars with StarCrete the double stength concrete

IRON AND ICE
China's Shenzhou-15 astronauts to return in June

China's space technology institute sees launches of 400 spacecraft

Shenzhou XV crew takes second spacewalk

China conducts ignition test in Mengtian space lab module

IRON AND ICE
LeoLabs expands space safety coverage with new site in Argentina.

Spacetime will orchestrate LEO network for Rivada constellation

HawkEye 360's latest satellite cluster begins operation

SatixFy and Kythera Space solutions partner to deliver advanced payload solutions for LEO constellations

IRON AND ICE
Antenova's tiny GNSS module with integrated antenna, high precision and low power

Ball Aerospace prototype payload to provide on-orbit data processing

Student-built satellite uses 'beach ball' for an antenna

Airbus partners with Kythera for OneSat mission sizing software

IRON AND ICE
Rutgers scientists identify substance that may have sparked life on earth

DLR Gottingen helps in the search for signs of life in space

CHEOPS mission extended

How do microbes live off light

IRON AND ICE
Inspiring mocktail menu served up by Space Juice winners

Study finds ocean currents may affect rotation of Europa's icy crust

New Horizons team discusses discoveries from the Kuiper Belt

New Horizons team adds AI to Kuiper Belt Object search

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.