. 24/7 Space News .
IRON AND ICE
Hi-res measurements of asteroid surface temperatures obtained from Earth
by Robert Perkins for Caltech News
Los Angeles CA (SPX) Aug 06, 2021

Millimeter-wavelength emissions reveal the temperature of the asteroid Psyche as it rotates through space.

A close examination of the millimeter-wavelength emissions from the asteroid Psyche, which NASA intends to visit in 2026, has produced the first temperature map of the object, providing new insight into its surface properties. The findings, described in a paper published in Planetary Science Journal (PSJ) on August 5, are a step toward resolving the mystery of the origin of this unusual object, which has been thought by some to be a chunk of the core of an ill-fated protoplanet.

Psyche orbits the sun in the asteroid belt, a donut-shaped region of space between Earth and Jupiter that contains more than a million rocky bodies that range in size from 10 meters to 946 kilometers in diameter.

With a diameter of more than 200 km, Psyche is the largest of the M-Type asteroids, an enigmatic class of asteroids that are thought to be metal rich and therefore potentially may be fragments of the cores of proto-planets that broke up as the solar system formed.

"The early solar system was a violent place, as planetary bodies coalesced and then collided with one another while settling into orbits around the sun," says Caltech's Katherine de Kleer, assistant professor of planetary science and astronomy and lead author of the PSJ article. "We think that fragments of the cores, mantles, and crusts of these objects remain today in the form of asteroids. If that's true, it gives us our only real opportunity to directly study the cores of planet-like objects."

Studying such relatively tiny objects that are so far away from Earth (Psyche drifts at a distance that ranges between 179.5 and 329 million km from Earth) poses a significant challenge to planetary scientists, which is why NASA plans to send a probe to Psyche to examine it up close. Typically, thermal observations from Earth-which measure the light emitted by an object itself rather than light from the sun reflected off of that object-are in infrared wavelengths and can produce only 1-pixel images of asteroids. That one pixel does, however, reveal a lot of information; for example, it can be used to study the asteroid's thermal inertia, or how fast it heats up in sunlight and cools down in darkness.

"Low thermal inertia is typically associated with layers of dust, while high thermal inertia may indicate rocks on the surface," says Caltech's Saverio Cambioni, postdoctoral scholar in planetary science and co-author of the PSJ article. "However, discerning one type of landscape from the other is difficult." Data from viewing each surface location at many times of day provide much more detail, leading to an interpretation that is subject to less ambiguity, and which provide a more reliable prediction of landscape type prior to a spacecraft's arrival.

De Kleer and Cambioni, together with co-author Michael Shepard of Bloomsburg University in Pennsylvania, took advantage of the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, which became fully operational in 2013, to obtain such data. The array of 66 radio telescopes enabled the team to map the thermal emissions from Psyche's entire surface at a resolution of 30 km (where each pixel is 30 km by 30 km) and generate an image of the asteroid composed of about 50 pixels.

This was possible because ALMA observed Psyche at millimeter wavelengths, which are longer (ranging from 1 to 10 millimeters) than the infrared wavelengths (typically between 5 and 30 microns). The use of longer wavelengths allowed the researchers to combine the data collected from the 66 telescopes to create a much larger effective telescope; the larger a telescope, the higher the resolution of the images it produces.

The study confirmed that Psyche's thermal inertia is high compared to that of a typical asteroid, indicating that Psyche has an unusually dense or conductive surface. When de Kleer, Cambioni, and Shepard analyzed the data, they also found that Psyche's thermal emission-the amount of heat it radiates-is just 60 percent of what would be expected from a typical surface with that thermal inertia. Because surface emission is affected by the presence of metal on the surface, their finding indicates that Psyche's surface is no less than 30 percent metal. An analysis of the polarization of the emission helped the researchers to roughly determine what form that metal takes. A smooth solid surface emits well-organized polarized light; the light emitted by Psyche, however, was scattered, suggesting that rocks on the surface are peppered with metallic grains.

"We've known for many years that objects in this class are not, in fact, solid metal, but what they are and how they formed is still an enigma," de Kleer says. The findings reinforce alternative proposals for Psyche's surface composition, including that Psyche could be a primitive asteroid that formed closer to the sun than it is today instead of a core of a fragmented protoplanet.

The techniques described in this study provide a new perspective on asteroid surface compositions. The team is now expanding its scope to apply these techniques to other large objects in the asteroid belt.

The study was enabled by a related project by the team led by Michael Shepard at Bloomsburg University that utilized de Kleer's data in combination with data from other telescopes, including Arecibo Observatory in Puerto Rico, to pin down the size, shape, and orientation of Psyche. That in turn allowed the researchers to determine which pixels that had been captured actually represented the asteroid's surface. Shepard's team was scheduled to observe Psyche again at the end of 2020, but damage from cable failures shut the telescope down before the observations could be made.

Research Report: "The Surface of (16) Psyche from Thermal Emission and Polarization Mapping"


Related Links
Caltech
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Lucy boxed to go
Kennedy Space Center FL (SPX) Aug 03, 2021
NASA's first spacecraft to explore the Trojan asteroids arrived Friday, July 30, at the agency's Kennedy Space Center (KSC) in Florida. It is now in a cleanroom at nearby Astrotech, ready to begin final preparations for its October launch. The mission has a 23-day launch period beginning on October 16. Lucy will undergo final testing and fueling prior to being moved to its launch pad at Cape Canaveral Space Force Station. "The coronavirus pandemic required us to re-engineer the way we conduc ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
Space station mishap caused orbiting lab to rotate 1 1/2 times, NASA says

Northrop Grumman set to launch 16th cargo delivery mission to ISS

Boeing Starliner launch delayed indefinitely

Virgin Galactic restarting space tickets from $450,000

IRON AND ICE
Boeing postpones Starliner capsule launch attempt over valve issue

SpaceX briefly puts together largest rocket in history at Texas base

Next Vega mission to orbit Pleiades Neo 4 EO bird and 4 small science sats

NASA continues RS-25 testing with 6th installment at Stennis

IRON AND ICE
NASA begins recruitment for long-duration Mars Mission Analog Study

Helicopter scouts ridge area for Perseverance

China's Mars rover travels over 800 meters on red planet

Mars rock drilling begins after NASA's helicopter helps plan rover's route

IRON AND ICE
Tianhe astronauts use free time to watch ping-pong and exercise

Shanxi company helps astronauts keep fit in space

China's space propaganda blitz endures at slick new planetarium

How Chinese astronauts stay healthy in space

IRON AND ICE
Long March rocket lifts off with communications satellite

BlackSky to expand constellation with three back-to-back missions

Skykraft to begin launch of space-based air traffic management constellation

Next batch of OneWeb satellites set to launch August 20

IRON AND ICE
NASA Exploration has LEGS

NSF awards funding for next-generation VLA antenna development

Experiment bound for Space Station turns down the heat

DARPA selects research teams to enable quantum shift in spectrum sensing

IRON AND ICE
New ESO observations show rocky exoplanet has just half the mass of Venus

Did nature or nurture shape the Milky Way's most common planets

Astronomers find evidence of possible life-sustaining planet

Small force, big effect: How the planets could influence the sun

IRON AND ICE
Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

A few steps closer to Europa: spacecraft hardware makes headway

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.