. 24/7 Space News .
ENERGY TECH
HKUST scientists explain the theory behind Ising superconductivity
by Staff Writers
Hong Kong (SPX) Nov 30, 2015


a) Maximum magnetic field Bc2 (normalized) at which superconductivity can survive versus temperature T. Filled circles are data taken from MoS2 thin films. Without taking into account internal magnetic fields generated by the lattice structure of MoS2, Bc2 cannot exceed 1. b) Taking into account the internal magnetic fields, the experimental data can be well explained theoretically. Image courtesy the Physics Department, HKUST. For a larger version of this image please go here.

Superconductivity is a fascinating quantum phenomenon in which electrons form pairs and flow with zero resistance. However, strong enough magnetic field can break electron pairs and destroy superconductivity. Surprisingly, experimental groups led by Prof. Ye and Prof. Zeitler in Groningen and Nijmegen found that superconductivity in thin films of MoS2 could withstand an applied magnetic field as strong as 37 Tesla.

An explanation for the phenomenon was needed and Prof. Law's theory group at Hong Kong University of Science and Technology promptly solved the puzzle.

Professor Law and his student Yuan proposed that the lattice structure of MoS2 thin films allows the moving electrons in the material to experience strong internal magnetic fields of about 100 Tesla.

This special type of internal magnetic fields, instead of damaging superconductivity, protects the superconducting electron pairs from being destroyed by external magnetic fields.

They called this type of superconductors, "Ising superconductors". They also predict that many other superconductors, which have similar lattice structure as MoS2, would fall into the same family of "Ising superconductors" as well.

In addition to their survivability under a strong magnetic field, Professor Law's team pointed out that Ising superconductors can be used to create a new type of particles called Majorana fermions. These Majorana fermions would have potential applications in making quantum computers.

"Many novel properties and applications of Ising superconductors have yet to be discovered," Professor Law said.

"Now that we understand the mechanism of how certain materials become resistant to interference from external magnetic fields, we can look for materials with similar characteristics to those of superconducting MoS2." Professor Law said.

"I am sure we will unearth more Ising superconductors soon."

The collective findings were published on 12 November in Science. DOI:10.1126/science.aab2277


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Hong Kong University of Science and Technology
Powering The World in the 21st Century at Energy-Daily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ENERGY TECH
The route to high temperature superconductivity goes through the flat land
Espoo, Finland (SPX) Nov 26, 2015
Superconductors are marvellous materials that are able to transport electric current and energy without dissipation. For this reason, they are extremely useful for constructing magnets that can generate enormous magnetic fields without melting. They have found important applications as essential components of the Large Hadron Collider particle accelerator at CERN, levitating trains, and the magn ... read more


ENERGY TECH
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

ENERGY TECH
ExoMars prepares to leave Europe for launch site

Tracking down the 'missing' carbon from the Martian atmosphere

Mars to lose its largest moon, Phobos, but gain a ring

Study: Mars to become a ringed planet following death of its moon

ENERGY TECH
Aerojet Rocketdyne tapped for spacecraft's crew module propulsion

Brits Aim for the Stars with Big Bucks on Offer to Conquer Final Frontier

XCOR develops Lynx Simulator

Orion ingenuity improves manufacturing while reducing mass

ENERGY TECH
China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

China to better integrate satellite applications with Internet

China's satellite expo opens

ENERGY TECH
Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

ISS EarthKAM ready for student imaging request

Partners in Science: Private Companies Conduct Valuable Research on the Space Station

SAGE III Leaves Langley for Journey to ISS

ENERGY TECH
Vega receives the LISA Pathfinder payload for its December 2 flight

NASA Orders SpaceX Crew Mission to International Space Station

NASA calls on SpaceX to send astronauts to ISS

NASA Selects New Technologies for Parabolic Flights and Suborbital Launches

ENERGY TECH
Retro Exo and Its Originators

How DSCOVR Could Help in Exoplanet Hunting

Forming planet observed for first time

UA researchers capture first photo of planet in making

ENERGY TECH
Material universe yields surprising new particle

Inkjet hologram printing now possible

Chemical design made easier

Success in producing a completely rare-earth free Feni magnet









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.