. | . |
Graduate student's BADASS code has astronomical benefits by Staff Writers Riverside CA (SPX) Dec 17, 2020
An astro-statistics course University of California, Riverside, graduate student Remington O. Sexton took three years ago taught him techniques that led him to develop free, open-source code benefiting astronomers everywhere. Called BADASS, which stands for Bayesian AGN Decomposition Analysis for SDSS Spectra, the code in its current form fits astronomical spectra of active galactic nuclei, or AGNs, from the Sloan Digital Sky Survey, or SDSS, using advanced statistical methods. "The code is unique in that it finally provides a way for astronomers to fit the stellar motions of stars simultaneously with many other components, is written in the popular programming language Python, and is versatile enough to fit not just AGNs, but normal galaxies as well," said Sexton, who earned his doctoral degree in physics and astronomy in September 2020. Sexton's breakthrough work is published in the January 2021 issue of the Monthly Notices of the Royal Astronomical Society. AGN is the general term used to describe a supermassive black hole in the center of a galaxy that is actively accreting material, usually in the form of interstellar gas, using its strong gravitational influence. AGNs are common; but not all galaxies have them at their centers. Each galaxy's center is believed, however, to have a supermassive black hole. Normal galaxies, such as the Milky Way, lack actively accreting black holes. Different celestial objects produce different types of spectra. An object's spectrum helps astronomers identify what type of object it is. Light from a celestial body with no intervening matter produces a spectrum that appears as a continuum. A challenge in astronomy has been separating the contribution of stellar light and the contribution of AGN light from each other in the galaxy's main spectral continuum. "The challenge is separating the two from each other, that is, isolating the stellar component from the AGN light contribution," Sexton said. "Aside from being versatile enough to fit many kinds of astronomical objects, which many codes aren't designed for, BADASS simultaneously fits stellar kinematics simultaneously with all other components in the spectra. Codes in the past used a two-step process of fitting stellar kinematics and other components independently. But this could introduce biases or uncertainties. The best way to perform spectral decomposition is to fit all components simultaneously. This is what BADASS does." Sexton designed BADASS also to detect and fit ionized gas outflows typically seen in optical emission line features and is the first to incorporate a set of specific criteria for their detection. Ionized gas outflow refers to the bulk motion of interstellar gas capable of escaping the gravitational influence of its host galaxy and the blackhole. "Ionized gas outflows have become a hot topic in the past decade and could explain how supermassive black holes and galaxies co-evolve with each other over cosmic time," said coauthor Gabriela Canalizo, a professor of physics and astronomy at UC Riverside and Sexton's doctoral advisor. Currently, BADASS is only being used to fit AGN objects. Sexton emphasized, however, that the code is versatile, easy to use, and can fit other objects such as normal galaxies. "BADASS can be used for fitting normal non-AGN host galaxies, and even individual stars," he said. "Currently, its usage is strictly for astronomical spectra, but the statistical framework BADASS is built on can be generalized for any kind of spectroscopy. That makes it extraordinarily versatile and useful." One motivation Sexton had to develop BADASS was to phase out the need for proprietary software - IDL programming language - and replace it with a free open-source language such as Python. "Now anyone can download BADASS for free and use it," he said. "It is ready to be run as long as you can install Python and all the packages it requires. Because this code can also detect and fit ionized gas outflows in optical spectra, it could greatly assist in the heightened interest in astronomy now in studying ionized gas outflows by creating larger samples for analysis."
Research Report: "Bayesian AGN Decomposition Analysis for SDSS spectra: a correlation analysis of [O III] ?5007 outflow kinematics with AGN and host galaxy properties."
Unibap becomes a member of AWS Partner Network for SpaceCloud Seattle WA (SPX) Dec 16, 2020 Unibap AB (publ) announces AWS integration with Unibap space-focused hardware and software that will enable container and serverless compute with lower latencies and less cost. This simplifies data management for satellite operators and application developers. The collaboration will allow customers to access AWS services and capabilities in the space environment for autonomous edge processing and event handling. The combination will give aerospace and satellite customers real-time access to AWS ed ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |