![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Berlin, Germany (DLR) Mar 23, 2021
On 11 March 2021, researchers from the German Aerospace Center successfully completed a two-week series of tests focusing on the safe, efficient and flexible rail transport of the future. The research conducted at DLR aims to increase the proportion of passenger and freight transport conducted by rail, increase passenger comfort by reducing the number of changeovers during journeys, increase safety at railway crossings, and optimise route capacity by increasing the flexibility of train configurations. In order to achieve this, rail transport requires more automation. DLR is developing the necessary communication and navigation techniques with its cooperation partners to allow for such new approaches. The test journeys were carried out by two project teams from the DLR Institute of Communications and Navigation and ran from Halle to Augsburg via Gottingen, Berlin, Munich and Herrsching. The 'advanced TrainLab', a specially equipped high-speed train operated by Deutsche Bahn, was used as a mobile laboratory, complete with high-frequency communications technologies, special antennas and sensors on board. In the V2X-DuRail project, the DLR team is paying particular attention to radio systems in the five-gigahertz frequency band, which allow secure communications between trains, parts of trains and carriages of a single train, and intersecting road traffic. In future, it will also be vital for the rail system to be able to reliably determine where a train is located, how long it is and whether it is still intact at any given time. The 'IMPACT' project team is developing a new method of localisation that uses measurements of Earth's magnetic field and works under conditions that are unfavourable for satellite navigation.
Communication between trains and cars uch channels could be set up to make better use of the available infrastructure and avoid collisions with other trains or cars. At the same time, cars are increasingly being fitted with radio-based communication systems that ensure an increase in the efficiency, comfort and safety of road traffic, while reducing environmental pollution. These radio systems are essential for networked and autonomous driving. However, the radio systems used in road and rail transport today and in future can affect one another. This can lead to malfunctions, especially in urban areas with a high vehicle density. There may also be environments such as urban canyons or bridges that make reliable signal propagation difficult. Yet reliable communication is essential for critical safety-related applications. Against this backdrop, the first series of tests carried out by the DLR researchers were based on determining which factors have what effect on radio transmissions and which countermeasures are effective. Various radio signals from other transport users were received and surveyed accurately within the test train, which was equipped with high-quality measurement technologies. In addition to the train, the project team also used two cars fitted with measurement equipment and a total of four different radio systems. The data obtained in this way can be used to make communications between trains and other transport users more reliable both now and in the future. The manoeuvres were coordinated using the Railway Collision Avoidance System (RCAS). This radio system, which is designed to prevent train collisions, was originally developed by DLR and is now available on the market via a spin-off company.
Position determination using Earth's magnetic field As part of the Intelligent Magnetic Positioning for Avoiding Collisions of Trains (IMPACT) project, DLR researchers are developing an autonomous on-board system that allows trains to precisely locate themselves on the track even under difficult conditions. The system makes use of the local strength of Earth's magnetic field and artificial intelligence. Earth's magnetic field is altered by the presence of metals. The local pattern that is created, referred to as the 'magnetic field signature', is unique, similar to a fingerprint. It is therefore possible to distinguish between every single section of rail track. The magnetic field is measured with high precision and the unique signature determined allows for very reliable location determination. In the second week of March, the IMPACT project team was able to test its localisation system in the field and measure real magnetic field signatures. To do this, they conducted measurements along the stretch of railway line between Gottingen and Kassel, which includes a lot of tunnels. The rolling laboratory reached a maximum speed of up to 200 kilometres per hour. The researchers also varied the points at which the measurements were made between the two directions of the reference track several times within a 10-kilometre tunnel. This would present a serious challenge for any train-based position determining technology. In the future, this localisation system will also utilise machine learning to independently familiarise itself with relevant sensor parameters. This will make it easier to retrofit within existing vehicles. The new technology could not only greatly increase the safety of rail transport, but also its flexibility and efficiency as it would allow trains on a specific route to be operated at higher density.
Optimal route utilisation Now the IMPACT and V2X-DuRail measurement campaigns have been completed, the data will be evaluated by DLR in Oberpfaffenhofen. The knowledge acquired will help advance important technologies, from the development of prototypes, to the application and manufacture of products alongside industrial partners where necessary. In this way, the DLR Institute of Communications and Navigation is continuing to make advances in the digitalisation of rail transport and the harnessing of its potential.
![]() ![]() Germany steams ahead with new hydrogen-powered train Berlin (AFP) Nov 23, 2020 Germany will trial a new hydrogen-powered train, its state-owned rail company said Monday, signalling a transition away from gas-guzzling diesel engines as it aims for a carbon-neutral future. Developed with German industrial giant Siemens, Deutsche Bahn said it will build a newly developed train and a "gas station" for 2024 that will for the first time fuel hydrogen trains in just 15 minutes - as fast as conventional diesel engines. "The fact that we... will refuel the train as quickly as a d ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |