. 24/7 Space News .
UAV NEWS
Fleets of drones could aid searches for lost hikers
by Rob Matheson for MIT News
Boston MA (SPX) Nov 05, 2018

MIT researchers describe an autonomous system for a fleet of drones to collaboratively search under dense forest canopies using only onboard computation and wireless communication - no GPS required.

Finding lost hikers in forests can be a difficult and lengthy process, as helicopters and drones can't get a glimpse through the thick tree canopy. Recently, it's been proposed that autonomous drones, which can bob and weave through trees, could aid these searches. But the GPS signals used to guide the aircraft can be unreliable or nonexistent in forest environments.

In a paper being presented at the International Symposium on Experimental Robotics conference next week, MIT researchers describe an autonomous system for a fleet of drones to collaboratively search under dense forest canopies. The drones use only onboard computation and wireless communication - no GPS required.

Each autonomous quadrotor drone is equipped with laser-range finders for position estimation, localization, and path planning. As the drone flies around, it creates an individual 3-D map of the terrain. Algorithms help it recognize unexplored and already-searched spots, so it knows when it's fully mapped an area. An off-board ground station fuses individual maps from multiple drones into a global 3-D map that can be monitored by human rescuers.

In a real-world implementation, though not in the current system, the drones would come equipped with object detection to identify a missing hiker. When located, the drone would tag the hiker's location on the global map. Humans could then use this information to plan a rescue mission.

"Essentially, we're replacing humans with a fleet of drones to make the search part of the search-and-rescue process more efficient," says first author Yulun Tian, a graduate student in the Department of Aeronautics and Astronautics (AeroAstro).

The researchers tested multiple drones in simulations of randomly generated forests, and tested two drones in a forested area within NASA's Langley Research Center. In both experiments, each drone mapped a roughly 20-square-meter area in about two to five minutes and collaboratively fused their maps together in real-time. The drones also performed well across several metrics, including overall speed and time to complete the mission, detection of forest features, and accurate merging of maps.

Exploring and mapping
On each drone, the researchers mounted a LIDAR system, which creates a 2-D scan of the surrounding obstacles by shooting laser beams and measuring the reflected pulses. This can be used to detect trees; however, to drones, individual trees appear remarkably similar. If a drone can't recognize a given tree, it can't determine if it's already explored an area.

The researchers programmed their drones to instead identify multiple trees' orientations, which is far more distinctive. With this method, when the LIDAR signal returns a cluster of trees, an algorithm calculates the angles and distances between trees to identify that cluster. "Drones can use that as a unique signature to tell if they've visited this area before or if it's a new area," Tian says.

This feature-detection technique helps the ground station accurately merge maps. The drones generally explore an area in loops, producing scans as they go. The ground station continuously monitors the scans.

When two drones loop around to the same cluster of trees, the ground station merges the maps by calculating the relative transformation between the drones, and then fusing the individual maps to maintain consistent orientations.

"Calculating that relative transformation tells you how you should align the two maps so it corresponds to exactly how the forest looks," Tian says.

In the ground station, robotic navigation software called "simultaneous localization and mapping" (SLAM) - which both maps an unknown area and keeps track of an agent inside the area - uses the LIDAR input to localize and capture the position of the drones. This helps it fuse the maps accurately.

The end result is a map with 3-D terrain features. Trees appear as blocks of colored shades of blue to green, depending on height. Unexplored areas are dark but turn gray as they're mapped by a drone.

On-board path-planning software tells a drone to always explore these dark unexplored areas as it flies around. Producing a 3-D map is more reliable than simply attaching a camera to a drone and monitoring the video feed, Tian says. Transmitting video to a central station, for instance, requires a lot of bandwidth that may not be available in forested areas.

More efficient searching
A key innovation is a novel search strategy that let the drones more efficiently explore an area. According to a more traditional approach, a drone would always search the closest possible unknown area. However, that could be in any number of directions from the drone's current position. The drone usually flies a short distance, and then stops to select a new direction.

"That doesn't respect dynamics of drone [movement]," Tian says. "It has to stop and turn, so that means it's very inefficient in terms of time and energy, and you can't really pick up speed."

Instead, the researchers' drones explore the closest possible area while considering their speed and direction and maintaining a consistent velocity. This strategy - where the drone tends to travel in a spiral pattern - covers a search area much faster. "In search and rescue missions, time is very important," Tian says.

In the paper, the researchers compared their new search strategy with a traditional method. Compared to that baseline, the researchers' strategy helped the drones cover significantly more area, several minutes faster and with higher average speeds.

One limitation for practical use is that the drones still must communicate with an off-board ground station for map merging. In their outdoor experiment, the researchers had to set up a wireless router that connected each drone and the ground station.

In the future, they hope to design the drones to communicate wirelessly when approaching one another, fuse their maps, and then cut communication when they separate. The ground station, in that case, would only be used to monitor the updated global map.


Related Links
Massachusetts Institute of Technology
UAV News - Suppliers and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


UAV NEWS
US Army tests DARPA autonomous flight system, pursuing integration with Black Hawk
Washington DC (SPX) Oct 31, 2018
An S-76B commercial helicopter flew over a small crowd gathered at Fort Eustis, Virginia, landed in an adjacent field after adjusting to miss a vehicle, and rose up to hover perfectly motionless for several minutes. The mid-October demonstration was remarkable because the pilot carried out the maneuvers using supervised autonomy in an aircraft equipped with DARPA's Aircrew Labor In-Cockpit Automation System (ALIAS). He operated the system via novel control interceptors and a tablet he had used for the f ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

UAV NEWS
Plant hormone makes space farming a possibility

Installing life support the hands-free way

US-Russia space cooperation to go on despite Soyuz launch mishap

Escape capsule with Soyuz MS-10 crew hit ground 5 times before stopping

UAV NEWS
Soyuz launch failed due to assembly problem: Russia

Viasat, SpaceX Enter Contract for a Future ViaSat-3 Satellite Launch

Astronauts confident of next crewed Soyuz mission to Space Station

Russia launches first Soyuz rocket since failed space launch

UAV NEWS
Mars Express keeps an eye on curious cloud

Desert test drive for Mars rover controlled from 1,000 miles away

Third ASPIRE test confirms Mars 2020 parachute a go

NASA's InSight will study Mars while standing still

UAV NEWS
China's space programs open up to world

China's commercial aerospace companies flourishing

China launches Centispace-1-s1 satellite

China tests propulsion system of space station's lab capsules

UAV NEWS
ESA on the way to Space19+ and beyond

Ministers endorse vision for the future of Europe in space

Space industry entropy

European Space Talks: we need more space!

UAV NEWS
Atomic path from insulator to metal messier than thought

Bose-Einstein condensate generated in space for the first time

Astroscale secures new funding for LEO debris clean up concept

New composite material that can cool itself down under extreme temperatures

UAV NEWS
Rocky and habitable - sizing up a galaxy of planets

Some planetary systems just aren't into heavy metal

Giant planets around young star raise questions about how planets form

Plan developed to characterize and identify ocean worlds

UAV NEWS
SwRI team makes breakthroughs studying Pluto orbiter mission

ALMA maps temperature of Jupiter's icy moon Europa

NASA's Juno Mission Detects Jupiter Wave Trains

WorldWide Telescope looks ahead to New Horizons' Ultima Thule glyby









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.