. | . |
Fixation of powder catalysts on electrodes by Staff Writers Bochum, Germany (SPX) Jul 03, 2017
Chemists at Ruhr-Universitat Bochum have developed a new method to tightly fix catalyst powders on electrode surfaces. Currently, the high physical stress induced on catalyst films by gas evolving reactions hampers the application of powder based catalysts. The developed technique is potentially interesting for hydrogen production by water electrolysis. A team involving Dr Corina Andronescu, Stefan Barwe and Prof Dr Wolfgang Schuhmann from the Center for Electrochemical Sciences reports on this in the international edition of Angewandte Chemie. "Catalyst syntheses often aim for nanoparticles in order to achieve a high surface area," Wolfgang Schuhmann explains. However, tight and stable fixation of nanopowders on electrodes still remains challenging. Suitable catalyst binders exist for electrodes employed in acidic media. Such binders are often deployed in alkaline environments because of the lack of suitable alternatives. However, a major drawback of using these binder materials in alkaline electrolytes is that they are intrinsically unstable and electrically insulating, thus essentially impeding the application of many highly active and potentially industrially interesting powder catalysts.
Polymer transfoms into carbon The polymer was applied together with the powder catalyst on the surface of a nickel electrode and subsequently heated at high temperatures. Upon thermal treatment, the polymer transformed into a carbon matrix embedding the powder catalyst particles. The distinctiveness was the choice of the used polymer. Polybenzoxazines are highly thermal stable and exhibit near-zero shrinkage at higher temperatures. In the absence of oxygen, they carbonize giving high residual char.
Easy to produce In principle, it is the same technique as painting the door of a car. "A mixture of catalyst and polymer could be sprayed on an electrode surface, which is then transferred into an oven," the scientist illustrates. The team at the Center for Electrochemical Sciences already tested this at the laboratory scale.
Washington (UPI) Jun 29, 2017 Archaeologists have recovered the earliest evidence of plant-based textile dyeing. The evidence is a 3,000-year-old piece of cloth found in Israel's Arava desert. Researchers say the record-setting wool and linen fragments offer insights into the textile industry that supported a highly hierarchical society in Israel's Timna Valley during between the 13th and 10th centuries BC. " ... read more Related Links Ruhr-University Bochum Space Technology News - Applications and Research
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |