. 24/7 Space News .
TECH SPACE
First observation of native ferroelectric metal
by Staff Writers
Canberra, Australia (SPX) Jul 08, 2019

Ferroelectric domains in a WTe2 single crystal (PFM imaging).

In a paper released in Science Advances, UNSW researchers describe the first observation of a native ferroelectric metal.

The study represents the first example of a native metal with bistable and electrically switchable spontaneous polarization states - the hallmark of ferroelectricity.

"We found coexistence of native metallicity and ferroelectricity in bulk crystalline tungsten ditelluride (WTe2) at room temperature," explains study author Dr Pankaj Sharma.

"We demonstrated that the ferroelectric state is switchable under an external electrical bias and explain the mechanism for 'metallic ferroelectricity' in WTe2 through a systematic study of the crystal structure, electronic transport measurements and theoretical considerations."

"A van der Waals material that is both metallic and ferroelectric in its bulk crystalline form at room temperature has potential for new nano-electronics applications," says author Dr Feixiang Xiang.

Ferroelectric Backgrounder
Ferroelectricity can be considered an analogy to ferromagnetism. A ferromagnetic material displays permanent magnetism, and in layperson's terms, is simply, a 'magnet' with north and south pole. Ferroelectric material likewise displays an analogous electrical property called a permanent electric polarisation, which originates from electric dipoles consisting of equal, but oppositely charged ends or poles. In ferroelectric materials, these electric dipoles exist at the unit cell level and give rise to a non-vanishing permanent electric dipole moment.

This spontaneous electric dipole moment can be repeatedly transitioned between two or more equivalent states or directions upon application of an external electric field - a property utilised in numerous ferroelectric technologies, for example nano-electronic computer memory, RFID cards, medical ultrasound transducers, infrared cameras, submarine sonar, vibration and pressure sensors, and precision actuators.

Conventionally, ferroelectricity has been observed in materials that are insulating or semiconducting rather than metallic, because conduction electrons in metals screen-out the static internal fields arising from the dipole moment.

The Study
A room-temperature ferroelectric semimetal was published in Science Advances in July 2019.

Bulk single-crystalline tungsten ditelluride (WTe2), which belongs to a class of materials known as transition metal dichalcogenides (TMDCs), was probed by spectroscopic electrical transport measurements, conductive-atomic force microscopy (c-AFM) to confirm its metallic behaviour, and by piezo-response force microscopy (PFM) to map the polarisation, detecting lattice deformation due to an applied electric field.

Ferroelectric domains - ie, the regions with oppositely oriented direction of polarization - were directly visualised in freshly-cleaved WTe2 single crystals.

Spectroscopic-PFM measurements with top electrode in a capacitor geometry was used to demonstrate switching of the ferroelectric polarization.

The study was supported by funding from the Australian Research Council through the ARC Centre of Excellence in Future Low-Energy Electronics Technologies (FLEET), and the work was performed in part using facilities of the NSW Nodes of the Australian National Fabrication Facility, with the assistance of the Australian Government Research Training Program Scholarship scheme.

First-principles density functional theory (DFT) calculations (University of Nebraska) confirmed the experimental findings of the electronic and structural origins of the ferroelectric instability of WTe2, supported by the National Science Foundation.

Ferroelectric Studies At Fleet
Ferroelectric materials are keenly studied at FLEET (the ARC Centre of Excellence in Future Low-Energy Electronics Technologies) for their potential use in low-energy electronics, 'beyond CMOS' technology.

The switchable electric dipole moment of ferroelectric materials could for example be used as a gate for the underlying 2D electron system in an artificial topological insulator.

In comparison with conventional semiconductors, the very close (sub-nanometre) proximity of a ferroelectric's electron dipole moment to the electron gas in the atomic crystal ensures more effective switching, overcoming limitations of conventional semiconductors where the conducting channel is buried tens of nanometres below the surface.

Topological materials are investigated within FLEET's Research theme 1, which seeks to establish ultra-low resistance electronic paths with which to create a new generation of ultra-low energy electronics.

FLEET is an ARC-funded research centre bringing together over a hundred Australian and international experts to develop a new generation of ultra-low energy electronics, motivated by the need to reduce the energy consumed by computing.

Research paper


Related Links
ARC Centre of Excellence in Future Low-Energy Electronics Technologies
Space Technology News - Applications and Research


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TECH SPACE
Researchers verify 70-year-old theory of turbulence in fluids
Dunedin, New Zealand (SPX) Jul 01, 2019
As you stir milk into a cup of coffee, you will see fluid turbulence in action - rapid mixing that has defied deep scientific understanding. A collaboration between researchers at the University of Otago, New Zealand, and University of Queensland, Australia, set out to learn more about the everyday enigma of turbulence by using the remarkable properties of superfluids, strange quantum fluids able to flow endlessly without any friction. The team's break-through findings, just published in Sci ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TECH SPACE
Aerojet Rocketdyne Delivers Orion Auxiliary Engines for Artemis 2

Soyuz capsule safely returns three space station crew members to Earth

Planetary Society's LightSail 2 Launched by Falcon Heavy

First-Ever Space Oven and Microgravity Baking Experiment

TECH SPACE
Rocket Lab successfully launches seventh Electron mission, deploys seven satellites to orbit

ESA expertise to support Portugal's launch program

Last Test Article for NASA's SLS Rocket Departs Michoud Assembly Facility

GREEN propellant infusion mission to test AFRL-developed green propellant

TECH SPACE
Inflatable Decelerator Will Hitch a Ride on the JPSS-2 Satellite

Mars 2020 Rover's 7-Foot-Long Robotic Arm Installed

A chaos found only on Mars

Paragon Space Development Corp awarded NASA contract for ISRU technology

TECH SPACE
Luokung and Land Space to develop control system for space and ground assets

Yaogan-33 launch fails in north China, Possible debris recovered in Laos

China develops new-generation rockets for upcoming missions

China's satellite navigation industry sees rapid development

TECH SPACE
Israeli space tech firm hiSky expands to the UK

All-alectric Maxar 1300-Class comsat delivers broadcast services for Eutelsat customers

Newtec collaborates with QinetiQ, marking move into space sector

RBC Signals awarded SBIR Phase I contract by US Air Force

TECH SPACE
Researchers verify 70-year-old theory of turbulence in fluids

Half of Indian Anti-Satellite Test Debris Still Orbiting in Space - Harvard Astronomer

Machine Learning Tool Searches Star Data for Likely Exoplanet Hosts

Researchers see around corners to detect object shapes

TECH SPACE
Planet Seeding and Panspermia

ALMA Pinpoints Formation Site of Planet Around Nearest Young Star

NASA's TESS Mission Finds Its Smallest Planet Yet

Cyanide Compounds Discovered in Meteorites May Hold Clues to the Origin of Life

TECH SPACE
Kuiper Belt Binary Orientations Support Streaming Instability Hypothesis

Study Shows How Icy Outer Solar System Satellites May Have Formed

Astronomers See "Warm" Glow of Uranus's Rings

Table salt compound spotted on Europa









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.