. 24/7 Space News .
TIME AND SPACE
First-ever direct observation of chiral currents in quantum Hall atomic simulation
by Staff Writers
Chicago IL (SPX) Apr 27, 2017


Graduate student Fangzhao Alex An working with Physics Professor Bryce Gadway in Loomis Laboratory at Illinois. Image courtesy L. Brian Stauffer, University of Illinois.

Using an atomic quantum simulator, scientists at the University of Illinois at Urbana-Champaign have achieved the first-ever direct observation of chiral currents in the model topological insulator, the 2-D integer quantum Hall system.

Topological Insulators (TIs) are arguably the most promising class of materials discovered in recent years, with many potential applications theorized. That's because TIs exhibit a special quality: the surface of the material conducts electricity, while the bulk acts as an insulator. Over the last decade, scientists have extensively probed the microscopic properties of TIs, to better understand the fundamental physics that govern their peculiar behavior.

Atomic quantum simulation has proven an important tool for probing the characteristics of TIs, because it allows researchers greater control and greater possibilities for exploring regimes not currently accessible in real materials. Finely tuned laser beams are used to trap ultracold rubidium atoms (about a billion times colder than room temperature) in a lattice structure that precisely simulates the structure of ideal materials.

Alex An, a physics graduate student working under Assistant Professor Bryce Gadway at Illinois, is lead author of the study, "Direct observation of chiral currents and magnetic reflection in atomic flux lattices," recently published in Science Advances.

The 2-D integer quantum Hall system in real materials is characterized by a magnetic field that causes electrons to make closed trajectories - such as a simple closed square orbit around four sites of a two-dimensional square lattice - in order to acquire a phase shift known as an Aharonov-Bohm phase. The magnitude of this phase shift depends on the strength of the magnetic field enclosed by the trajectory.

An explains, "Both in the electronic system and in our simulated system, magnetic fields give rise to nontrivial topology: while particles in the bulk of the system undergo orbits around four-site cells, the edge particles cannot undergo full orbits and instead flow cyclically around the edge of the entire system, generating chiral currents. These microscopic phenomena lead to a macroscopic quantized conductance, which has been measured in materials like graphene and in 2D electron gases based on semiconductor heterostructures."

For this study, the team developed a new atomic-quantum-simulation technique that allowed the scientists to directly observe the chiral currents for the first time ever. The scientists employed about a dozen lasers to trap and cool rubidium atoms to nano-Kelvin temperatures. Next they configured the ultracold atoms in a periodic lattice, in precise analogy to electrons in the periodic crystal structure of a real material. Then, using their new technique, the scientists manipulated the synthetic magnetic field to observe the emergent behavior of the electrons.

"While other researchers working in atomic-molecular-optical physics create this lattice in real space, we instead link atomic momentum states to create a lattice not in a real, physical dimension, but in a 'synthetic' dimension, or momentum space," An differentiates. "We link these states using a pair of laser beams that can impart photon momentum to the atoms in discrete bunches."

An goes on to explain how this new approach offers greater control over the lattice parameters at the individual site level, allowing the scientists to engineer phases onto the atoms as they travel between the lattice sites.

"With the addition of a second pair of laser beams, we create a fully synthetic, 2-D lattice of momentum states," he continues, "Because of our site-resolved control over the lattice, we can apply different synthetic magnetic fluxes to each four-site cell. So where previous studies have constructed two-dimensional systems with one real-space dimension and one synthetic dimension, our fully synthetic approach allows us to do a few unique things.

"First, we have the ability to create homogenous as well as inhomogenous flux patterns - the latter is not currently attainable in real-space systems. Secondly, we demonstrate the ability to rapidly and easily tune the flux of a homogeneous field across the full range of flux values - this has now been achieved in a real-space setup, at about the same time as our work. And finally, our new technique enables direct site-resolved observation of chiral currents. Direct observation of the underlying chiral currents has not been possible in real materials."

In the homogenous flux study, the team observed the chiral currents of a homogeneous artificial magnetic field for the entire range of applied flux values (-p to p). A positive flux caused the surface atoms to flow clockwise around the system, and a negative flux induced an opposite, counter-clockwise flow.

The engineered system enabled the team to tune quickly and easily the applied flux across the full range of flux values, beyond the range of conventional materials and with more versatility than real-space atomic systems.

Then, in the inhomogeneous flux study, the team engineered a sharp dislocation in the artificial magnetic field by combining this topologically nontrivial system with a topologically trivial region of zero flux.

They observed that atomic population reflected off of the boundary between these two regions, with maximum reflection at the largest difference in flux. A more traditional sense of reflection, like a ball bouncing off of a wall, requires a shift in the potential energy landscape.

However, this magnetic reflection occurs solely due to the difference in topology. This phenomenon would be very difficult to study with other atomic systems, and would be essentially impossible to study in real electronic materials.

"For a real electronic material, engineering such a step-like increase of magnetic flux would require a jump of magnetic field strengths by 104 Tesla over just a few angstroms - a crazy situation that we're however able to simulate using a controlled atomic system," says Gadway.

An stresses that, while TIs hold tremendous implications for future applications in technology, this is fundamental research, and these findings won't immediately go into a pocket-sized device like a smartphone.

"We hope to shed more light on similar phenomena in real materials by studying them in our atomic system," shares An.

"The integer quantum Hall effect that we study in this work is marked by macroscopic phenomena like quantized conductance which have been studied in real materials, but the underlying, microscopic chiral edge states that give rise to these phenomena have been out of reach of real materials - but not out of reach of our system! Similarly, we hope to gain more insight into the underlying workings of more complex systems, fueled by a fundamental desire to understand and as a way to eventually construct real materials that display the same properties."

In future studies, the team plans to engineer systems having similar two-dimensional geometries, with more complex topological features.

"One of these systems consists of two coupled topological wires like those featured in our previous work on the Su-Schrieffer-Heeger model. The group of Smitha Vishveshwara has predicted that by adding specific disorder to this system, we may be able to probe the elusive Hofstadter butterfly spectrum. We also hope to study a new type of 'multipole insulator' system recently proposed by Wladimir Benalcazar, Taylor Hughes, and collaborators. This system would be characterized by topological corner modes carrying fractional quantized charge."

Research paper

TIME AND SPACE
Quantum mechanics are complex enough, for now...
Vienna, Austria (SPX) Apr 24, 2017
Quantum mechanics is based on a set of mathematical rules, describing how the quantum world works. These rules predict, for example, how electrons orbit a nucleus in an atom, and how an atom can absorb photons, particles of light. The standard rules of quantum mechanics work extremely well, but, given that there are still open questions regarding the interpretation of quantum mechanics, sc ... read more

Related Links
University of Illinois College of Engineering
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Lunar, Martian Greenhouses Designed to Mimic Those on Earth

NASA spacesuits over budget, tight on timeline: audit

Astronaut Airman launched to International Space Station

'Better you than me,' Trump tells record-breaking astronaut

TIME AND SPACE
New Russian Medium-Class Carrier Rocket Could Compete With SpaceX's Falcon

RSC Energia, Boeing Hammer Out a Deal on Sea Launch Project

India seeks status as a major space power with more satellite launches

India to Launch Carrier Rocket With Higher Payload Capacity in May

TIME AND SPACE
How Old are Martian Gullies

SwRI-led team discovers lull in Mars' giant impact history

Opportunity Nears 'Perseverance Valley'

Engineers investigate simple, no-bake recipe to make bricks on Mars

TIME AND SPACE
China courts international coalition set up to promote space cooperation

Commentary: Innovation drives China's space exploration

Macao marks 2nd China Space Day with astronaut sharing space experience

China's Long March-5 Y2 carrier rocket leaves for launch site

TIME AND SPACE
ESA boosting its Argentine link with deep space

Arianespace, Intelsat and SKY Perfect JSAT sign a new Launch Services Agreement, for Horizons 3e

Airbus and Intelsat team up for more capacity

Commercial Space Operators To Canada: "We're Here, and We can Help"

TIME AND SPACE
Man-Made Space Junk Puts Astronauts, Operational Spacecraft in Serious Danger

Engineering technique is damaging materials research reveals

Finding order and structure in the atomic chaos where materials meet

Changing the game

TIME AND SPACE
'Iceball' Planet Discovered Through Microlensing

What can we learn from dinosaur proteins

'On Verge of Most Profound Discovery Ever,' NASA Tells US Congress

Rocky super-earth found in habitable zone of small red star

TIME AND SPACE
ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus

Cold' Great Spot discovered on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.