24/7 Space News
STELLAR CHEMISTRY
Finding cannibalized stars
Artistic depiction of a Be star and its disk (upper right) orbited by a faint, hot, stripped star (lower left). Painting by William Pounds.
ADVERTISEMENT
Finding cannibalized stars
by Staff Writers
Atlanta GA (SPX) Feb 12, 2024

Scientists working with the powerful telescopes at Georgia State's Center for High Angular Resolution Astronomy (CHARA) Array have completed a survey of a group of stars suspected to have devoured most of the gas from orbiting companion stars. These sensitive measurements have directly detected the feeble glow of the cannibalized stars.

The new research, led by Postdoctoral Research Associate Robert Klement, is published in The Astrophysical Journal. The work identifies new orbits of stripped subdwarf stars that circle fast-spinning massive stars, leading to new understanding of the life trajectory of close binary stars.

Working with colleagues at the CHARA Array in Mount Wilson, Calif., Klement aimed the high-powered telescopes at a collection of relatively nearby B-emission line stars, or "Be stars" for short. These are rapidly rotating stars thought to harbor unusual orbiting companions.

The Be stars are probably formed in intense interactions between close pairs of stars. Astronomers find that many stars occur in such pairs, a trend that is especially true among stars more massive than our Sun. Pairs with small separations face a tumultuous destiny, because they grow in size as they age and can reach a dimension similar to their separation.

When this happens, gas from the growing star can cross the gap between the pair, so that the companion can feast upon the transferred gas stream. This cannibalization process will eventually strip the mass donor star of almost all its gas and will leave behind the tiny hot core of its former nuclear-burning center.

Astronomers predicted that the mass transfer stream causes the companion star to spin up and become a very fast rotator. Some of the fastest rotating stars are found as Be stars. Be stars rotate so quickly that some of their gas is flung from their equatorial zones to form an orbiting gas ring.

Until now, this predicted stage in the life of close binary pairs has eluded astronomers because the stars' separations are too small to see with conventional telescopes and because the stripped stellar corpses are hidden in the glare of their bright companions. However, Georgia State's CHARA Array telescopes offered the researchers the means to find the stripped stars.

The CHARA Array uses six telescopes spread across the summit of Mount Wilson to act like an enormous single telescope that is 330 meters in diameter. This gives astronomers the ability to separate the light of pairs of stars even with very small angular offsets. Klement also used the MIRC-X and MYSTIC cameras - built at the University of Michigan and Exeter University in the U.K. - which can record the light signal of both very bright and very faint objects close together.

The researchers wanted to determine if the Be stars had been spun up by mass transfer and host orbiting stripped stars. Klement embarked upon a two-year observing program at CHARA, and his work quickly paid off. He discovered the faint light of stripped companions in nine of 37 Be stars. He focused on seven of these targets and was able to follow the orbital motion of the stellar corpse around the Be star.

"The orbits are important because they allow us to determine the masses of stellar pairs," Klement said. "Our mass measurements indicate that stripped stars lost almost everything. In the case of the star HR2142, the stripped star probably went from 10 times the mass of the Sun down to about one solar mass."

Stripped stars were not detected around every Be star, and researchers believe that in some of these cases, the corpse has transformed into a tiny white dwarf star, too faint to detect even with the CHARA Array. In other cases, it may be that the interaction was so intense that the stars merged to become one fast-rotating star.

Klement is now extending the search for orbiting stripped stars to Be stars in the southern sky using the European Southern Observatory's Very Large Telescope Interferometer in Chile. He is also working with Luqian Wang at the Yunnan Observatories in China in research using the NASA Hubble Space Telescope to detect the faint light of the stripped companions. Because these corpses are hot, they are relatively brighter in the ultraviolet wavelengths that can only be observed with the Hubble Space Telescope.

"This survey of Be stars - and the discovery of nine faint companion stars - truly demonstrates the power of CHARA," said Alison Peck, a program director in the National Science Foundation's Astronomical Sciences Division, which supports the CHARA Array. "Using the array's exceptional angular resolution and high dynamic range allows us to answer questions about star formation and evolution that have never been possible to answer before."

Douglas Gies, director of the CHARA Array, said the research has finally uncovered a key hidden stage in the lives of close stellar pairs.

"The CHARA Array survey of the Be stars has revealed directly that these stars were created through a wholesale transformation by mass transfer," Gies said. "We are now seeing, for the first time, the result of the stellar feast that led to the stripped stars."

Research Report:The CHARA Array Interferometric Program on the Multiplicity of Classical Be Stars: New Detections and Orbits of Stripped Subdwarf Companions

Related Links
Georgia State University
Stellar Chemistry, The Universe And All Within It

Subscribe Free To Our Daily Newsletters

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
STELLAR CHEMISTRY
UKansas researchers awarded NSF grant to explore the Cosmic Web
Los Angeles CA (SPX) Jan 31, 2024
Researchers at the University of Kansas, led by Professor Gregory Rudnick of physics and astronomy, have embarked on an ambitious project to unravel the complexities of galaxy evolution. Funded by a significant $375,000 grant from the National Science Foundation (NSF), the team is set to explore the intricate relationship between galaxies and their cosmic journeys through varied environments. At the heart of this research is the desire to understand the "gas content and star-formation properties o ... read more

ADVERTISEMENT
ADVERTISEMENT
STELLAR CHEMISTRY
LeoLabs secures $29M to expand space safety using AI-based solutions

AFRL Helps NASA wrap up equipment testing for Artemis mission

Flawless Photonics to Test Groundbreaking In-Space Glass Fabrication on ISS

Russia launches supply rocket to ISS

STELLAR CHEMISTRY
Equatorial Launch Australia Partners with Equatorial Space Systems for Rocket Launches in 2024

First Ariane 6 flight model ships to Europe's Spaceport

Second Private US Moon Probe launches on a Falcon 9 rocket

USSF-124 Mission: Successful Deployment of Security Satellites with SpaceX

STELLAR CHEMISTRY
A Feast of Images: Sols 4093-4094

NASA engineers trying to fix stuck dust cover on Perseverance Mars rover camera

Fun Math and a New Butte: Sols 4096-4097

Partial Cover Malfunction on Perseverance's SHERLOC Instrument Impacts Mars Research

STELLAR CHEMISTRY
BIT advances microbiological research on Chinese Space Station

Shenzhou 18 and 19 crews undertake intensive training for next missions

Space Pioneer and LandSpace Lead China's Private Sector to New Heights in Space

Tianzhou 6 burns up safely reentering Earth

STELLAR CHEMISTRY
Sidus Space Advances with LizzieSat Satellites LS-2 and LS-3 Production on Track

An astronomer's lament: Satellite megaconstellations are ruining space exploration

UK invests in pioneering Mars and Lunar science with new funding

Into the Starfield

STELLAR CHEMISTRY
TelePIX Launches TetraPLEX: The Next-Gen AI Processor Elevating Satellite Data Analysis

European satellite to crash back to Earth within week

Space Debris conference in Riyadh tackles growing issues

Rocket Lab Sets Course for Historic In-Space Manufacturing Capsule Return

STELLAR CHEMISTRY
Passing Stars Altered Orbital Changes in Earth, Other Planets

SETI Institute Utilizes Advanced Ellipsoid Technique in Quest for Extraterrestrial Signals

Scientists Unveil Free-Floating Planetary Giants in the Orion Nebula

Migration solves exoplanet puzzle

STELLAR CHEMISTRY
NASA invites public to dive into Juno's Spectacular Images of Io

Europa Clipper gears up with full instrument suite onboard

New images reveal what Neptune and Uranus really look like

Researchers reveal true colors of Neptune, Uranus

Subscribe Free To Our Daily Newsletters


ADVERTISEMENT



The content herein, unless otherwise known to be public domain, are Copyright 1995-2023 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.