. 24/7 Space News .
TIME AND SPACE
Famous black hole has jet pushing cosmic speed limit
by Staff Writers
Boston MA (SPX) Jan 07, 2020

These images show evidence from NASA's Chandra X-ray Observatory that the black hole in the galaxy Messier 87 (M87) is blasting particles out at over 99% the speed of light, as described in our latest press release. While astronomers have observed features in the M87 jet blasting away from its black hole this quickly at radio and optical wavelengths for many years, this provides the strongest evidence yet that actual particles are travelling this fast. Astronomers required the sharp X-ray vision from Chandra in order to make these precise measurements.

Using NASA's Chandra X-ray Observatory, astronomers have seen that the famous giant black hole in Messier 87 is propelling particles at speeds greater than 99% of the speed of light.

The Event Horizon Telescope Collaboration released the first image of a black hole with observations of the massive, dark object at the center of Messier 87, or M87, last April. This black hole has a mass of about 6.5 billion times that of the Sun and is located about 55 million light-years from Earth. The black hole has been called M87* by astronomers and has recently been given the Hawaiian name of "Powehi."

For years, astronomers have observed radiation from a jet of high energy particles - powered by the black hole - blasting out of the center of M87. They have studied the jet in radio, optical, and X-ray light, including with Chandra. And now by using Chandra observations, researchers have seen that sections of the jet are moving at nearly the speed of light.

"This is the first time such extreme speeds by a black hole's jet have been recorded using X-ray data," said Ralph Kraft of the Center of Astrophysics | Harvard and Smithsonian (CfA) in Cambridge, Mass., who presented the study at the American Astronomical Society meeting in Honolulu, Hawaii. "We needed the sharp X-ray vision of Chandra to make these measurements."

When matter gets close enough to a black hole, it enters into a swirling pattern called an accretion disk. Some material from the inner part of the accretion disk falls onto the black hole and some of it is redirected away from the black hole in the form of narrow beams, or jets, of material along magnetic field lines. Because this infall process is irregular, the jets are made of clumps or knots that can sometimes be identified with Chandra and other telescopes

The researchers used Chandra observations from 2012 and 2017 to track the motion of two X-ray knots located within the jet about 900 and 2,500 light-years away from the black hole. The X-ray data show motion with apparent speeds of 6.3 times the speed of light for the X-ray knot closer to the black hole and 2.4 times the speed of light for the other.

"One of the unbreakable laws of physics is that nothing can move faster than the speed of light," said co-author Brad Snios, also of the CfA. "We haven't broken physics, but we have found an example of an amazing phenomenon called superluminal motion."

Superluminal motion occurs when objects are traveling close to the speed of light along a direction that is close to our line of sight. The jet travels almost as quickly towards us as the light it generates, giving the illusion that the jet's motion is much more rapid than the speed of light. In the case of M87*, the jet is pointing close to our direction, resulting in these exotic apparent speeds.

Astronomers have previously seen such motion in M87*'s jet at radio and optical wavelengths, but they have not been able to definitively show that matter in the jet is moving at very close to the speed of light. For example, the moving features could be a wave or a shock, similar to a sonic boom from a supersonic plane, rather than tracing the motions of matter.

This latest result shows the ability of X-rays to act as an accurate cosmic speed gun. The team observed that the feature moving with an apparent speed of 6.3 times the speed of light also faded by over 70% between 2012 and 2017. This fading was likely caused by particles' loss of energy due to the radiation produced as they spiral around a magnetic field. For this to occur the team must be seeing X-rays from the same particles at both times, and not a moving wave.

"Our work gives the strongest evidence yet that particles in M87*'s jet are actually traveling at close to the cosmic speed limit," said Snios.

The Chandra data are an excellent complement to the EHT data. The size of the ring around the black hole seen with the Event Horizon Telescope is about a hundred million times smaller than the size of the jet seen with Chandra.

Another difference is that the EHT observed M87 over six days in April 2017, giving a recent snapshot of the black hole. The Chandra observations investigate ejected material within the jet that was launched from the black hole hundreds and thousands of years earlier.

"It's like the Event Horizon Telescope is giving a close-up view of a rocket launcher," said the CfA's Paul Nulsen, another co-author of the study, "and Chandra is showing us the rockets in flight."

Research Report: "Detection of Superluminal Motion in the X-Ray Jet of M87"


Related Links
Chandra X-Ray Center
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
Two supermassive black holes caught in a galaxy crash
Charlottesville VA (SPX) Jan 06, 2020
An international team of astronomers used the Atacama Large Millimeter/submillimeter Array (ALMA) to create the most detailed image yet of the gas surrounding two supermassive black holes in a merging galaxy. 400 million light-years away from Earth, in the constellation of Ophiuchus, two galaxies are crashing into each other and forming a galaxy we know as NGC 6240. This peculiarly-shaped galaxy has been observed many times before, as it is relatively close by. But NGC 6240 is complex and ch ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Christina Koch sets record for longest space flight by a woman

Amid tech turmoil, celebration at global electronics show

Indonesia Negotiating Launch of 1st Indigenous Astronaut with Russia's Roscosmos

Solar sail in earth orbit is big breakthrough for China

TIME AND SPACE
NASA prepares Artemis I SLS rocket stage for move to Pegasus Barge

China tests micro propulsion technology for space-based gravitational wave detection

Russia launches Rokot carrier rocket, Its Last Space Launch of 2019

Russia says first hypersonic missiles enter service

TIME AND SPACE
Mars 2020 rover to seek ancient life, prepare human missions

NASA's trip to Mars begins in California 'clean room'

Developing a technique to study past Martian climate

Promising progress for ExoMars parachutes

TIME AND SPACE
China may have over 40 space launches in 2020

China launches powerful rocket in boost for 2020 Mars mission

China's Xichang set for 20 space launches in 2020

China sends six satellites into orbit with single rocket

TIME AND SPACE
China's heaviest satellite positioned in geosynchronous orbit

SpaceX set to launch third batch of Starlink satellites

US expects to rocket ahead in space during 2020

Russian prosecutors refer 80 criminal cases tied to spaceport construction to authorities

TIME AND SPACE
Ceramic materials that are IR-transparent

New nano-barrier for composites could strengthen spacecraft payloads

Lasers learn to accurately spot space junk

Northrop Grumman lands $1B contract for F-16 AESA radars

TIME AND SPACE
A real-life deluminator for spotting exoplanets by reflected starlight

Life may have first emerged in phosphorous-rich lakes

Massive gas disk raises questions about planet formation theory

Researchers spy on planets as fluffy as cotton candy

TIME AND SPACE
Looking back at a New Horizons New Year's to remember

NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!

Reports of Jupiter's Great Red Spot demise greatly exaggerated









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.