. 24/7 Space News .
STELLAR CHEMISTRY
Falling stars hold clue for understanding dying stars
by Staff Writers
Tokyo, Japan (SPX) Sep 07, 2018

We can estimate the age of heavy elements in the primordial Solar System by measuring the traces left in meteorites by specific radioactive nuclei synthesized in certain types of supernovae.

An international team of researchers has proposed a new method to investigate the inner workings of supernovae explosions. This new method uses meteorites and is unique in that it can determine the contribution from electron anti-neutrinos, enigmatic particles which can't be tracked through other means.

Supernovae are important events in the evolution of stars and galaxies, but the details of how the explosions occur are still unknown. This research, led by Takehito Hayakawa, a visiting professor at the National Astronomical Observatory of Japan, found a method to investigate the role of electron anti-neutrinos in supernovae.

By measuring the amount of 98Ru (an isotope of Ruthenium) in meteorites, it should be possible to estimate how much of its progenitor 98Tc (a short-lived isotope of Technetium) was present in the material from which the Solar System formed.

The amount of 98Tc in turn is sensitive to the characteristics, such as temperature, of electron anti-neutrinos in the supernova process; as well as to how much time passed between the supernova and the formation of the Solar System. The expected traces of 98Tc are only a little below the smallest currently detectable levels, raising hopes that they will be measured in the near future.

Hayakawa explains, "There are six neutrino species. Previous studies have shown that neutrino-isotopes are predominantly produced by the five neutrino species other than the electron anti-neutrino. By finding a neutrino-isotope synthesized predominantly by the electron anti-neutrino, we can estimate the temperatures of all six neutrino species, which are important for understanding the supernova explosion mechanism."

At the end of its life, a massive star dies in a fiery explosion known as a supernova. This explosion blasts most of the mass in the star out into outer space. That mass is then recycled into new stars and planets, leaving distinct chemical signatures which tell scientists about the supernova.

Meteorites, sometimes called falling stars, formed from material left over from the birth of the Solar System, thus preserving the original chemical signatures.

This work appeared in Physical Review Letters on Sept. 4, 2018.


Related Links
National Institutes of Natural Sciences
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Reigniting a dead star
Charleston SC (SPX) Aug 30, 2018
Occasionally a star or other celestial object may have the misfortune of passing too close to a neighboring black hole, resulting in the object being ripped apart by the black hole's extreme tidal forces. During such violent "tidal disruption events" (TDEs), the object being disrupted is simultaneously stretched and compressed in opposing directions. If the object happens to be a white dwarf, which is the dead core of a Sun-like star, the compression may be sufficient to briefly reignite nuclear f ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Going up! Japan to test mini 'space elevator'

Airbus-built ACLS Life Support Rack is ready for launch from Tanegashima

UAE announces first astronauts to go to space

Bahrain in talks with Russia to send astronauts into space

STELLAR CHEMISTRY
Alaska Aerospace To Host Open House And Town Hall Meeting In Kodiak

How an LWO and his team guided a Minotaur IV rocket out of the labyrinth

NASA, SpaceX Agree on Plans for Crew Launch Day Operations

India readies baby rockets to tap small satellites' market

STELLAR CHEMISTRY
Mars dust storm clears, raising hope for stalled NASA rover

NASA Launching Mars Lander Parachute Test from Wallops Sep 7

Team Continues to Listen for Opportunity

Opportunity rover expected to call home as Martian dust storm clears

STELLAR CHEMISTRY
China tests propulsion system of space station's lab capsules

China unveils Chang'e-4 rover to explore Moon's far side

China's SatCom launch marketing not limited to business interest

China to launch space station Tiangong in 2022, welcomes foreign astronauts

STELLAR CHEMISTRY
European Space Talks: sharing our passion for space

The world's lowest-cost global communications network

Successful capital raising sees Kleos Space Launch on the ASX

Artwork unveiled on exoplanet satellite

STELLAR CHEMISTRY
Access to 3D printing is changing the work in research labs

A new way to remove ice buildup without power or chemicals

Researchers use acoustic forces to print droplets that couldn't be printed before

All that is gold is not biochemically stable

STELLAR CHEMISTRY
A Direct-Imaging Mission to Study Earth-like Exoplanets

Rutgers scientists identify protein that may have existed when life began

Little star sheds light on young planets

Water worlds could support life, study says

STELLAR CHEMISTRY
Tally Ho Ultima

New Horizons makes first detection of Kuiper Belt flyby target

Deep inside the Great Red Spot hints at water on Jupiter

Water discovered in the Great Red Spot indicates Jupiter might have plenty more









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.