. 24/7 Space News .
CARBON WORLDS
FSU researchers refine estimate of amount of carbon in Earth's outer core
by Staff Writers
Tallahassee FL (SPX) Aug 20, 2021

An illustration of the structure of the Earth from a research simulation to investigate the composition of the planet's outer core. Dark spheres in the core represent iron and tan spheres represent carbon atoms. The path taken by carbon atoms during the simulation are shown by the tan lines.

New research from Florida State University and Rice University is providing a better estimate of the amount of carbon in the Earth's outer core, and the work suggests the core could be the planet's largest reservoir of that element.

The research, published in the journal Communications Earth and Environment, estimates that 0.3 to 2.0 percent of the Earth's outer core is carbon.

Though the percentage of carbon there is low, it's still an enormous amount because the outer core is so large. The researchers estimated that the outer core contains between 5.5 and 36.8 + 10^24 grams of carbon - an immense number.

"Understanding the composition of the Earth's core is one of the key problems in the solid-earth sciences," said co-author Mainak Mookherjee, an associate professor of geology in the Department of Earth, Ocean and Atmospheric Science. "We know the planet's core is largely iron, but the density of iron is greater than that of the core. There must be lighter elements in the core that reduce its density. Carbon is one consideration, and we are providing better constraints as to how much might be there."

Previous research has estimated the total amount of carbon on the planet. This work refines the estimates for the carbon content of Earth to a range between about 990 parts per million and more than 6,400 parts per million. That would mean the core of the Earth - which includes both the outer core and the inner core - could contain 93 to 95 percent of the planet's carbon.

Because humans can't access the Earth's core, they have to use indirect methods to analyze it. The research team compared the known speed of compressional sound waves traveling through the Earth to computer models that simulated different compositions of iron, carbon and other light elements at the pressure and temperature conditions of the Earth's outer core.

"When the velocity of the sound waves in our simulations matched the observed velocity of sound waves traveling through the Earth, we knew the simulations were matching the actual chemical composition of the outer core," said lead author and postdoctoral researcher Suraj Bajgain.

Scientists have attempted to give a range of the amount of carbon in the outer core before. This research narrows that possible range by including other light elements - namely oxygen, sulfur, silicon, hydrogen and nitrogen - in the models estimating the outer core's composition.

Just like hydrogen and oxygen and other elements, carbon is a life-essential element. It's part of what makes life possible on Earth.

"It's a natural question to ask where did this carbon that we are all made of come from and how much carbon was originally supplied when the Earth formed," Mookherjee said. "Where is the bulk of the carbon residing now? How has it been residing and how has it transferred between different reservoirs? Understanding the total inventory of carbon is what this study gives us insight to."

Knowing how much carbon exists on Earth will help scientists improve their understanding of the composition of both our planet and rocky planets elsewhere in the universe.

"There have been a lot of activities over the last decade to determine the carbon budget of the Earth's core using cosmochemical and geochemical models," said study co-author Rajdeep Dasgupta, the Maurice Ewing Professor of Earth, Environmental and Planetary Sciences at Rice University.

"However, it remained an open question because of a lot of uncertain parameters on the accretion process and the building blocks of rocky planets. What is neat about this study is that it provides a direct estimate on the Earth's outer core's present-day carbon budget. Therefore, this will in turn help the community bracket the possible planetary ingredients and the early processes better."

The National Science Foundation and NASA supported this research, and the Extreme Science and Engineering Discovery computing (XSEDE) and the Research Computing Center (RCC) at FSU provided computing resources for this work.

Research Report: "Earth's core could be the largest terrestrial carbon reservoir"


Related Links
Florida State University
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
How crushed rocks can help capture CO2
Laxenburg, Austria (SPX) Jul 28, 2021
IIASA researchers and international colleagues explored the potential of using finely ground rock to help with the removal of CO2 from the atmosphere on the road to achieving net-zero emissions and keeping global warming below 1,5C. To reach the long-term temperature goals of the Paris Agreement, it is imperative to actively remove carbon dioxide (CO2) from the atmosphere and permanently store it - thus achieving so called negative emissions. This poses a tremendous challenge: how can we realize n ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
NASA seeks student tech ideas for suborbital launch

Northrop Grumman set to launch 16th cargo delivery mission to ISS

NASA, Boeing to Move Starliner to Production Facility for Propulsion System Evaluation

NASA mulls how to dispose of International Space Station

CARBON WORLDS
Boeing to remove Starliner from rocket, months-long delay expected

Boeing Starliner launch faces further delays

Hermeus fully-funded to flight with US Air Force Partnership

Netflix plans series on historic SpaceX Inspiration4 mission

CARBON WORLDS
NASA's Ingenuity helicopter completes 12th Mars flight

Aviation Week awards NASA's Ingenuity Mars Helicopter with laureate

Is Curiosity exploring surface sediments or lake deposits

NASA begins recruitment for long-duration Mars Mission Analog Study

CARBON WORLDS
Tianhe astronauts use free time to watch ping-pong and exercise

Shanxi company helps astronauts keep fit in space

China's space propaganda blitz endures at slick new planetarium

How Chinese astronauts stay healthy in space

CARBON WORLDS
Microsoft unveils Australian Space Startup launchpad

Phantom Space acquires Micro Aerospace Solutions

Business growth scheme open to next group of space entrepreneurs

BlackSky to expand constellation with three back-to-back missions

CARBON WORLDS
Facebook unveils virtual reality 'workrooms'

A technique to predict radiation risk during ISS Missions

DRCongo to review China Moly copper-cobalt mine deal

High-speed camera captures a water jet's splashy impact as it pierces a droplet

CARBON WORLDS
Did nature or nurture shape the Milky Way's most common planets

New ESO observations show rocky exoplanet has just half the mass of Venus

Small force, big effect: How the planets could influence the sun

Astronomers find evidence of possible life-sustaining planet

CARBON WORLDS
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.