. 24/7 Space News .
SHAKE AND BLOW
FSU researchers find even small disturbances can trigger catastrophic storms
by Staff Writers
Tallahassee FL (SPX) May 14, 2020

An image of the simulated wind field around a modeled hurricane. (Courtesy of Jacob Carstens)

You've probably seen the satellite images that show a hurricane developing: thick white clouds clumping together, arms spinning around a central eye as it heads for the coast.

After decades of research, meteorologists still have questions about how hurricanes develop. Now, Florida State University researchers have found that even the smallest changes in atmospheric conditions could trigger a hurricane, information that will help scientists understand the processes that lead to these devastating storms.

"The whole motivation for this paper was that we still don't have that universal theoretical understanding of exactly how tropical cyclones form, and to really be able to forecast that storm-by-storm, it would help us to have that more solidly taken care of," said Jacob Carstens, a doctoral student in the Department of Earth, Ocean and Atmospheric Science.

The research by Carstens and Assistant Professor Allison Wing has been published in the Journal of Advances in Modeling Earth Systems.

Current theories on the formation of hurricanes agree that some sort of disturbance must exist to start the process that leads to a hurricane. Carstens used numerical models that started with simple conditions to better understand exactly how those disturbances arise.

"We're trying to go as bare bones as possible, looking at just how exactly clouds want to organize themselves without any of these external factors playing into it to form a tropical cyclone more efficiently," he said.

"It's a way we can further round out our broader understanding and look more purely at the actual tropical cyclones themselves rather than the surrounding environment's impact on it."

The simulations started with mostly uniform conditions spread across the imaginary box where the model played out. Then, researchers added a tiny amount of random temperature fluctuations to kickstart the model and observed how the simulated clouds evolved.

Despite the random start to the simulation, the clouds didn't stay randomly arranged. They formed into clusters as the water vapor, thermal radiation and other factors interacted. As the clusters circulated through the simulated atmosphere, the researchers tracked when they formed hurricanes.

They repeated the model at simulated latitudes between 0.1 degrees and 20 degrees north, representative of areas such as parts of western Africa, northern South America and the Caribbean. That range includes the latitudes where tropical cyclones typically form, along with latitudes very close to the equator where their formation is rare and less studied.

The scientists found that every simulation in latitudes between 10 and 20 degrees produced a major hurricane, even from the stable conditions under which they began the simulation. These came a few days after a vortex first emerged well above the surface and affected its surrounding environment.

They also showed the possibility of cloud interaction contributing to the development of a tropical cyclone very close to the equator, which rarely occurs in nature but has still been observed as close as 1.4 degrees north away.

Hurricanes are dangerous weather events. Forecasting can help prevent deaths, but a big storm can still cause billions of dollars in damage. A better theoretical understanding of their formation will help meteorologists predict and prepare for these storms, both in short-term forecasts and long-term climate projections, and communicate their understanding to the public.

"It's becoming ever more important in our field that we connect with emergency managers, the general population and other local officials to advise them on what they can expect, how they should prepare and what sorts of impacts are going to be heading their way," Carstens said.

"A more robust understanding of how tropical cyclones form can help us to better forecast their location, their track and their intensity. It really goes down the line and helps us to communicate sooner as well as more efficiently and eloquently to the public that really needs it."

Research paper


Related Links
Florida State University
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


SHAKE AND BLOW
Climate change is influencing where tropical cyclones are formed
Washington DC (UPI) May 05, 2020
Over the last 40 years, climate change has been influencing where tropical cyclones form, according to a new study. Although the number of tropical cyclones generated each year remains stable, previous research suggest storms are getting bigger and moving slower - bad news for coastal communities. Now, new models suggest climate change is also altering the distribution of tropical cyclones. Over the last four decades, storms have been increasing in number in the North Atlantic and Centr ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
Google affiliate abandons futuristic neighborhood project

Spider eyes in space

Ready, set, go for COVID-conscious astronaut training

Airbus and Xenesis sign payload contract for Bartolomeo Platform on ISS

SHAKE AND BLOW
Launch Complex 39B prepared to support Artemis I

Firefly Aerospace achieves AS9100 Quality Certification and readies for first Firefly Alpha launch

Express satellites to be launched on 30 July, Proton-M repairs to end in June

Why our launch of the NASA and SpaceX Demo-2 mission to the ISS is essential

SHAKE AND BLOW
NASA's Perseverance Rover Spacecraft Put in Launch Configuration

NASA Perseverance Mars Rover Scientists Train in the Nevada Desert

NASA's Perseverance Rover Mission Getting in Shape for Launch

Perseverance Presses On, Remains Targeted for Summer Launch

SHAKE AND BLOW
China's experimental new-generation manned spaceship works normally in orbit

Long March-5B rocket enables China to construct space station

China's new spacecraft returns to Earth: official

China's space test hits snag with capsule 'anomaly'

SHAKE AND BLOW
Inmarsat launches solution for the rail industry

ThinKom completes Antenna Interoperability Demonstrations on Ku-Band LEO constellation

Building satellites amid COVID-19

Infostellar has raised a total of $3.5M in convertible bonds

SHAKE AND BLOW
China tests 3D printing in space for first time

Liquid metal research invokes 'Terminator' film - but much friendlier

Special effects and virtual guests: China weddings go online

'Assassin's Creed' stars as Xbox teases new games

SHAKE AND BLOW
Life on the rocks helps scientists understand how to survive in extreme environments

Study: Life might survive, and thrive, in a hydrogen world

Exoplanets: How we'll search for signs of life

Microorganisms in parched regions extract needed water from colonized rocks

SHAKE AND BLOW
Telescopes and spacecraft join forces to probe deep into Jupiter's atmosphere

Newly reprocessed images of Europa show 'chaos terrain' in crisp detail

Mysteries of Uranus' oddities explained by Japanese astronomers

Jupiter probe JUICE: Final integration in full swing









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.