. 24/7 Space News .
ICE WORLD
Extreme fieldwork, climate modeling yields new insight into predicting Greenland's melt
by Staff Writers
Los Angeles CA (SPX) Dec 14, 2017


illustration only

A new UCLA-led study reinforces the importance of collaboration in assessing the effects of climate change.

The research, published Dec. 5 in the journal Proceedings of the National Academy of Sciences, offers new insights about previously unknown factors affecting Greenland's melting ice sheet, and it could ultimately help scientists more accurately predict how the phenomenon could cause sea levels to rise.

Greenland is the single largest melting ice sheet in terms of meltwater runoff contributing to rising sea levels - and at least half of sea level rise from Greenland is from melting ice, said Laurence C. Smith, a UCLA professor of geography. (That's even more than the amount caused by ice calving, when large blocks of ice separate from the ice sheet, forming icebergs, which eventually melt into the sea.)

Since 2012, a team led by Smith has visited Greenland's ice sheet several times, using satellites, drones and sophisticated sensors to track flow rates of meltwater rivers atop the glaciers, and to map their watersheds, which include the surface areas between the rivers.

In 2015, Smith and a group of UCLA graduate students and collaborators focused on a 27-square-mile watershed, and they discovered an important process that had previously been left out of climate-model calculations. Some of the meltwater from the lakes and rivers atop the region's glaciers, which end in large sinkholes called "moulins" and barrel down through the glacier, is being stored and trapped on top of the glacier inside a low-density, porous "rotten ice."

"Ours is the first independent data-gathering effort to directly measure rates of meltwater runoff from the top of the ice," Smith said. The team's research was funded by NASA. "Researchers, including us, have attempted gather information using flows from the edge of the ice, but those measurements are problematic for testing climate models."

Smith's team found a discrepancy between its data and the calculations of meltwater runoff from five climate models. Those models' estimates were 21 to 58 percent higher than what Smith's team measured on the ice.

So Smith invited the scientists who created those models to collaborate with him. Together, they checked real-time statistics from weather stations on the ice to confirm that the data in the climate models were correct - and they found the models' calculations were accurate. Which meant that the meltwater's journey over the ice surface was more complex than previously imagined: The scientists recognized that before the water passes through the ice via moulins, it can pool, sit indefinitely or refreeze in porous ice at the surface, Smith said.

"After eliminating all other possibilities, we deduced that the disagreement in our data is because of sunlight penetrating into the ice, causing subsurface melting and meltwater storage," said Dirk van As, a co-author of the study and a senior researcher at the Geological Survey of Denmark and Greenland. "And now we know this is happening in the higher reaches of the bare ice zone that cover large regions of the ice sheet.

"We now know that calculation of meltwater retention in porous ice should be included somehow," he said.

To measure river discharge on the ice, Smith and his team adapted a technique normally used on land. Working in shifts, they collected data hourly, around the clock, for three days in July 2015, braving the cold, wind and 20 hours a day of blazing sunshine. The researchers used safety gear to anchor themselves to the ice and protect themselves from the swift-moving water flowing into dangerous moulins, where surface water plummets into the ice sheet interior.

Among the many logistical challenges was determining how to set up equipment to measure river flow in a way that researchers didn't need to be positioned on both sides of a river.

"Unless you have a helicopter, you can't station people on both sides of a large river on top of the ice," said Lincoln Pitcher, a UCLA doctoral student in geography, who figured out a way to keep sensors in place after trial and error on land and ice. They needed to come up with a stable and strong system that would stay in place even though the ice surface around them was melting.

Study co-author, Asa Rennermalm, professor of geography at Rutgers University-New Brunswick was part of the field team.

"We used a device called an Acoustic Doppler Current Profiler, which tracks discharge based on sound," she said. "We attached it to a floatable platform, and then attached that to ropes, which were attached to poles on either side of the ice river. We moved the platform back and forth across the river every hour for 72 hours. No one has ever done that before on the Greenland ice sheet."

Van As said the project proved that combining expertise from multiple disciplines - among them meteorology, oceanography and hydrology (the study of the properties and movement of water over land) - is essential for fully understanding how glaciers and ice sheets respond to the climate system.

"It is important that hydrologists like Larry bring their extensive knowledge into the field of glaciology, using approaches that are new to our discipline," he said.

In general, glaciologists are not accustomed to thinking about watersheds on top of the ice, Smith said. The irregularities those watersheds impart on the timing and amount of meltwater penetrating the ice are not currently considered in geophysical models of "ice dynamics," meaning the speed and spatial pattern of sliding glacial ice as it moves toward the sea.

"We're taking the very mature field of land surface hydrology, which deals with river flow and watersheds on land, and applying it to the ice sheet, which has typically been the scientific domain of solid-ice geophysics," he said. "We have to borrow from hydrology because the ice surface is becoming more of a hydrologic phenomenon. And we can take these tools from another discipline and apply them and actually have a conceptual breakthrough."

Smith and his team now are working on a study based on data from a 2016 trip to Greenland, when they spent a week tracking watersheds and digging into the rotten ice.

Led by UCLA graduate student Matthew Cooper, the researchers are attempting to better explain how rotten ice traps water. They have tracked the rotten ice to a depth of nearly 3 feet below the surface - a finding that could help scientists who develop climate models to better understand how ice sheets are losing mass.

Part of Smith's mission in Greenland is empowering a new generation of hydrologists who are eager to join the front lines of tracking global climate change.

"Climate change is not remote news for me anymore," said Kang Yang, a former UCLA postdoctoral scholar, who was part of the field team for this study. Now a professor at China's Nanjing University, Yang will continue to work with Smith on mapping the rivers on Greenland's ice sheet.

Research paper

ICE WORLD
Operation IceBridge 2017: The Beauty of Ice
Greenbelt MD (SPX) Nov 27, 2017
Ice can be stunningly beautiful and also quite varied in its appearance. The most obvious differences are between the two main ice types: land ice and sea ice. But even sea ice can vary dramatically from one place to another. On November 14, Operation IceBridge scientist John Sonntag took this photograph of ice in the Weddell Sea, a part of the Southern Ocean off the Antarctic Peninsula. T ... read more

Related Links
Smith and his team now are working on a study based on data from a 2016 trip to Greenland, when they spent a week tracking watersheds and digging into the rotten ice. Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Tech titans ramp up tools to win over children

Aerospace and Mitchell Institute release new report on policy needs for space operations

UAE launches programme to send astronauts into space

China pushed global patent filings to record high in 2016: UN

ICE WORLD
Rocket Lab to launch rocket from New Zealand

SpaceX's Elon Musk to launch his own car into deep space

ISRO eyes one rocket launch a month in 2018

Russia to build launch pad for super heavy-lift carrier by 2028

ICE WORLD
EU exempts fuel for ExoMars mission from Russian sanctions

NASA's oldest Mars rover survives another harsh winter

Mars Rover Team's Tilted Winter Strategy Works

Brown: Clay on Mars May Have Formed in Primordial Steam Bath

ICE WORLD
Nation 'leads world' in remote sensing technology

China plans for nuclear-powered interplanetary capacity by 2040

China plans first sea based launch by 2018

China's reusable spacecraft to be launched in 2020

ICE WORLD
mu Space becomes first Thai startup to acquire satellite license

Regulation and compliance for nontraditional space missions

Orbital ATK purchase by Northrop Grumman approved by shareholders

UK space launch program receives funding boost from Westminster

ICE WORLD
Better mastery of heat flow leads to next-generation thermal cloaks

Penn researchers establish universal signature fundamental to how glassy materials fail

In first, 3-D printed objects connect to WiFi without electronics

3-D-printed minifactories

ICE WORLD
Two Super-Earths around red dwarf K2-18

U of T researcher finds Earth-like conditions in little-known exoplanet - and discovers a new planet

A New Spin to Solving Mystery of Stellar Companions

The CHEOPS scientific instrument is complete

ICE WORLD
Wrapping up 2017 one year out from MU69

Jupiter Blues

Research bolsters possibility of plate tectonics on Europa

Pluto's hydrocarbon haze keeps dwarf planet colder than expected









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.