. 24/7 Space News .
STELLAR CHEMISTRY
Explosion on a white dwarf observed
by Staff Writers
Erlangen, Germany (SPX) May 13, 2022

illustration only

When stars like our Sun use up all their fuel, they shrink to form white dwarfs. Sometimes such dead stars flare back to life in a super hot explosion and produce a fireball of X-ray radiation. A research team led by FAU has now been able to observe such an explosion of X-ray light for the very first time.

"It was to some extent a fortunate coincidence, really," explains Ole Konig from the Astronomical Institute at FAU in the Dr. Karl Remeis observatory in Bamberg, who has published an article about this observation in the reputable journal Nature, together with Prof. Dr. Jorn Wilms and a research team from the Max Planck Institute for Extraterrestrial Physics, the University of Tubingen, the Universitat Politecnica de Catalunya in Barcelona und the Leibniz Institute for Astrophysics Potsdam.

"These X-ray flashes last only a few hours and are almost impossible to predict, but the observational instrument must be pointed directly at the explosion at exactly the right time," explains the astrophysicist.

The instrument in this case is the eROSITA X-ray telescope, which is currently located one and a half million kilometers from Earth and has been surveying the sky for soft X-rays since 2019. On July 7, 2020 it measured strong X-ray radiation in an area of the sky that had been completely inconspicuous four hours previously.

When the X-ray telescope surveyed the same position in the sky four hours later, the radiation had disappeared. It follows that the X-ray flash that had previously completely overexposed the center of the detector must have lasted less than eight hours.

X-ray explosions such as this were predicted by theoretical research more than 30 years ago, but have never been observed directly until now. These fireballs of X-rays occur on the surface of stars that were originally comparable in size to the Sun before using up most of their fuel made of hydrogen and later helium deep inside their cores. These stellar corpses shrink until "white dwarfs" remain, which are similar to Earth in size but contain a mass that can be similar to that of our Sun.

"One way to picture these proportions is to think of the Sun being the same size as an apple, which means Earth would be the same size as a pin head orbiting around the apple at a distance of 10 meters," explains Jorn Wilms.

Stellar corpses resemble gemstones
On the other hand, if you were to shrink an apple to the size of a pin head, this tiny particle would retain the comparatively large weight of the apple. "A teaspoon of matter from the inside of a white dwarf easily has the same mass as a large truck," Jorn Wilms continues. Since these burnt out stars are mainly made up of oxygen and carbon, we can compare them to gigantic diamonds that are the same size as Earth floating around in space. These objects in the form of precious gems are so hot they glow white. However, the radiation is so weak that it is difficult to detect from Earth.

Unless the white dwarf is accompanied by a star that is still burning, that is, and when the enormous gravitational pull of the white dwarf draws hydrogen from the shell of the accompanying star. "In time, this hydrogen can collect to form a layer only a few meters thick on the surface of the white dwarf," explains FAU astrophysicist Jorn Wilms.

In this layer, the huge gravitational pull generates enormous pressure that is so great that it causes the star to reignite. In a chain reaction, it soon comes to a huge explosion during which the layer of hydrogen is blown off. The X-ray radiation of an explosion like this is what hit the detectors of eROSITA on July 7, 2020 producing an overexposed image.

"Using the model calculations we originally drew up while supporting the development of the X-ray instrument, we were able to analyze the overexposed image in more detail during a complex process to gain a behind the scenes view of an explosion of a white dwarf, or nova," explains Jorn Wilms. According to the results, the white dwarf has around the mass of our Sun and is therefore relatively large. The explosion generated a fireball with a temperature of around 327,000 degrees, making it around sixty times hotter than the Sun.

Since these novae run out of fuel quite quickly, they cool rapidly and the X-ray radiation becomes weaker until it eventually becomes visible light, which reached Earth half a day after the eROSITA detection and was observed by optical telescopes.

"A seemingly bright star then appeared, which was actually the visible light from the explosion, and so bright that it could be seen on the night sky by the bare eye," explains Ole Konig.

Seemingly "new stars" such as this one have been observed in the past and were named "nova stella", or "new star" on account of their unexpected appearance. Since these novae are only visible after the X-ray flash, it is very difficult to predict such outbreaks and it is mainly down to chance when they hit the X-ray detectors. "We were really lucky," says Ole Konig.

Research Report:X-ray detection of a nova in the fireball phase


Related Links
University of Erlangen-Nuremberg
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Hyperfast white dwarf stars provide clues for understanding supernovae
Tokyo, Japan (SPX) May 08, 2022
Scientists from the RIKEN Cluster for Pioneering Research have used computer modeling to show how a hypothesized type of supernova would evolve on the scale of thousands of years, giving researchers a way to look for examples of supernovae of this model, known as "D6." Supernovae are important for cosmology, as one type, Ia, is used as a "standard candle" that allows distance to be measured, and in fact they were used for the measurements that showed, surprisingly to initial observers, that the ex ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Relations on ISS not changed following Russia's Invasion of Ukraine

Ariel Ekblaw on building beautiful architecture in space

ISS Partnership faces 'Administrative Difficulties' NASA Panel Says

Students compete to improve everyday life on the Space Station

STELLAR CHEMISTRY
Boeing reportedly butting heads with supplier over Starliner issues

Work continues to return Artemis I Moon rocket back to launch pad for next test

Launch of China's commercial carrier rocket fails

FAA issues Commercial Space Reentry Site Operator License for Huntsville Airport

STELLAR CHEMISTRY
A Different Perspective on Mirador Butte Sols 3473-3475

New study indicates limited water circulation late in the history of Mars

Study reveals new way to reconstruct past climate on Mars

Sols 3471-3472: Up The Mountain We Go!

STELLAR CHEMISTRY
China's cargo craft docks with space station combination

China launches the Tianzhou 4 cargo spacecraft

China prepares to launch Tianzhou-4 cargo spacecraft

China launches Jilin-1 commercial satellites

STELLAR CHEMISTRY
Kepler provides on-orbit high-capacity data service to Spire Global

Terran Orbital ships CENTAURI-5 satellite to Cape Canaveral

NASA selects SES Government Solutions to support Near-Earth communications

Rocket Lab launches BRO-6 for Unseenlabs

STELLAR CHEMISTRY
Smarter satellites: ESA Discovery accelerates AI in space

Unpacking black-box models

Researchers develop 3D-printed shape memory alloy with superior superelasticity

Failed eruptions are at the origin of copper deposits

STELLAR CHEMISTRY
Researchers reveal the origin story for carbon-12, a building block for life

The origin of life: A paradigm shift

Planet-forming disks evolve in surprisingly similar ways

Experiments measure freezing point of extraterrestrial oceans to aid search for life

STELLAR CHEMISTRY
Traveling to the centre of planet Uranus

Juno captures moon shadow on Jupiter

Greenland Ice, Jupiter Moon Share Similar Feature

Search for life on Jupiter moon Europa bolstered by new study









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.