24/7 Space News
CARBON WORLDS
Exploring Innovations in Marine Biomass and Blue Carbon Capture
illustration only
Exploring Innovations in Marine Biomass and Blue Carbon Capture
by Clarence Oxford
Los Angeles CA (SPX) Jun 05, 2024

A new study offers first-time insights into three emerging climate innovations to safeguard or increase the carbon naturally captured by ocean and coastal ecosystems: rapid interventions to save the Great Barrier Reef, satellite-tracked kelp beds in the deep ocean, and seagrass nurseries in the United Kingdom. The research, published in Environmental Science and Policy and co-authored by leading climate scholars at Boston University, Aarhus University, and the University of Sussex Business School, advances knowledge of understudied interventions in marine habitat protection to manage greenhouse gas emissions.

These climate change interventions, known as blue carbon, preserve or enhance marine and coastal ecosystems as valuable sources of carbon removal and storage. Currently, more than half of the world's biological carbon is captured and stored by marine living organisms, which are threatened by acidification, temperature change, severe storms, and pollution. Previous studies have shown that improved management of these habitats could potentially arrest up to 10% of global emissions reductions needed to meet Paris Agreement targets.

Expanding knowledge of potential solutions
While blue carbon solutions could reduce emissions, generate revenue, and advance conservation policy, questions remain around their efficacy and potential effects on sociopolitical systems.

"Compared to the robust history of studying soil and forest systems for carbon management, harnessing marine ecosystems in the fight against climate change is relatively new and remains unproven," said Benjamin Sovacool, the study's lead author and director of the Boston University Institute for Global Sustainability, who is also affiliated with Aarhus University and the University of Sussex Business School. "As these emerging technologies are more widely deployed, it is essential that we develop a comprehensive understanding of their ties to cultural, political, and economic systems."

Understanding each innovation
Drawing on 46 expert interviews, 38 site visits, and extensive document analysis, Sovacool and co-authors Chad M. Baum, Sean Low, and Livia Fritz of Aarhus University evaluated the social narratives, technology, and co-impacts of coral reef preservation in Australia, seagrass restoration in the United Kingdom, and seaweed cultivation and deep ocean storage in the United States.

Coral reef preservation in Australia supports blue carbon as coral tissues consume and capture carbon dioxide and bicarbonate. Through interviews with 23 local experts, the research team identified a narrative of crisis and collapse around saving the Great Barrier Reef as a national treasure. The narrative is also steeped in hope and moral urgency, motivating a willingness to explore a diversity of experimental and controversial new technologies - from genetic editing to cloud brightening. Positive co-impacts of reef preservation include more eco-tourism and better fisheries, while negative co-impacts include the potential for invasive species outbreaks.

Seagrass restoration captures carbon by directly growing biomass and trapping organic particles in the roots and sediments of seagrass meadows. The research team visited restoration efforts in the United Kingdom and conducted 12 interviews with seagrass experts from several universities, organizations, and the charity Project Seagrass. They discovered that narratives around restoration emphasize how unique, fragile, and distinct seagrass is, as well as its potential as an efficient and durable carbon store.

Innovation in seagrass restoration requires broad, incremental advancements in knowledge around foundational marine science, botany, and data collection, which may make it relatively costlier and slower to implement. Potential benefits include improving water quality and cleanliness, promoting biodiversity and healthy fisheries, reversing acidification, and preventing coastal erosion.

Seaweed cultivation reduces carbon by increasing biomass through growing massive kelp beds in the deep ocean. Following 11 interviews, most of them with employees at a United States-based startup, the researchers identified a narrative of advancing technological innovation and generating profit grounded in a duty to save the world's oceans. Innovation is deliberatively non-participatory, driven by a small group seeking to rapidly and massively scale operations. Seaweed cultivation could increase food production, water quality, and waste treatment, but faces a lack of social acceptance and may lead to uncontrolled growth.

Narratives, innovation styles, and co-impacts, plus contextual factors such as place, time, and cultural values, contribute to a given blue technology's likelihood for success, the researchers conclude. The results of this study offer a glimpse into the future of blue carbon innovations, which the authors anticipate will be an increasingly relevant and popular area of scientific policy and discovery.

Research Report:The sociotechnical dynamics of blue carbon management: Testing typologies of ideographs, innovation, and co-impacts for marine carbon removal

Related Links
Boston University Institute for Global Sustainability
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Subscribe Free To Our Daily Newsletters
Tweet

RELATED CONTENT
The following news reports may link to other Space Media Network websites.
CARBON WORLDS
Ocean Floor Topography Found to Significantly Impact Carbon Sequestration
Los Angeles CA (SPX) Jun 05, 2024
The carbon cycle, a key process regulating Earth's climate, involves the movement of carbon between the atmosphere, oceans, and continents. While volcanic eruptions and human activities release carbon dioxide, forests and oceans absorb it, maintaining a balanced system. Carbon sequestration has become a vital method in combating climate change. A recent study reveals that the shape and depth of the ocean floor account for up to 50% of the changes in oceanic carbon sequestration depth over the past ... read more

CARBON WORLDS
Human bodies mostly recover from space, tourist mission shows

Ohio State students to test space food solutions for NASA

US and Germany double down on space exploration

Virgin Galactic completes final spaceflight before two-year pause

CARBON WORLDS
Boeing Starliner spacecraft springs more leaks on way to ISS

Rocket Lab plans 50th Electron mission to deploy five satellites for Kineis

Galactic Energy Launches Third Rocket in 10 Days

Stealth gas contracts awarded amid high profile crewed Starliner mission

CARBON WORLDS
New analysis suggests lack of subglacial lake on Mars

NASA explores new Mars Sample Return concepts

Martian Polar Ice Flow Mystery Finally Explained

Mars' subsurface ice could be a key to sustaining future habitats on other planets

CARBON WORLDS
China Open to Space Collaboration with the US

Shenzhou 18 crew conducts first spacewalk

Zebrafish on China's space station reported to be in good condition

China sends experimental satellite into orbit with Long March 4C rocket

CARBON WORLDS
Fired SpaceX workers sue Elon Musk over workplace abuses

Nara Space Secures $14.5M Series B to Expand Satellite Fleet

China launches multi-functional communication satellite for Pakistan

CGI works on new interfaces for European Space Agency to expand satellite communications market

CARBON WORLDS
Heat-Resistant Metal Alloys Under Study

Magnesium oxide transition insights for super-Earth exoplanets revealed

Purdue Researchers Transform 2D Metal Halide Perovskites into 1D Nanowires

DR Congo copper, cobalt miners trapped in exploitative conditions: NGOs

CARBON WORLDS
Giant viruses discovered on Greenland ice sheet

Planet-forming Disks Around Low-mass Stars Show Unique Characteristics

NASA's Webb Telescope Observes Potentially Habitable Exoplanets

Newly Discovered Planet Retains Atmosphere Despite Star's Intense Radiation

CARBON WORLDS
Understanding Cyclones on Jupiter Through Oceanography

Unusual Ion May Influence Uranus and Neptune's Magnetic Fields

NASA's Europa Clipper Arrives in Florida for Launch Preparation

New Earth-Based Telescope Images of Jupiter's Moon Io Match Spacecraft Quality

Subscribe Free To Our Daily Newsletters




The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.