. 24/7 Space News .
Exploring Europa possible with silicon-germanium transistor technology
by Tess Malone for GT News
Atlanta GA (SPX) Oct 10, 2022

stock illustration only

Europa is more than just one of Jupiter's many moons - it's also one of most promising places in the solar system to look for extraterrestrial life. Under 10 kilometers of ice is a liquid water ocean that could sustain life. But with surface temperatures at -180 Celsius and with extreme levels of radiation, it's also one of the most inhospitable places in the solar system. Exploring Europa could be possible in the coming years thanks to new applications for silicon-germanium transistor technology research at Georgia Tech.

Regents' Professor John D. Cressler in the School of Electrical and Computer Engineering (ECE) and his students have been working with silicon-germanium heterojunction bipolar transistors (SiGe HBTs) for decades and have found them to have unique advantages in extreme environments like Europa.

"Due to the way that they're made, these devices actually survive those extreme conditions without any changes made to the underlying technology itself," said Cressler, who is the project investigator. "You can build it for what you want it to do on Earth, and you then can use it in space."

The researchers are in year one of a three-year grant in the NASA Concepts for Ocean Worlds Life Detection Technology (COLDTech) program to design the electronics infrastructure for upcoming Europa surface missions. NASA plans to launch the Europa Clipper in 2024, an orbiting spacecraft that will map the oceans of Europa, and then eventually send a landing vehicle, Europa Lander, to drill through the ice and explore its ocean. But it all starts with electronics that can function in Europa's extreme environment.

Cressler and his students, together with researchers from NASA Jet Propulsion Lab (JPL) and the University of Tennessee (UT), demonstrated the capabilities of SiGe HBTs for this hostile environment in a paper presented at the IEEE Nuclear and Space Radiation Effects Conference in July.

Europa's Challenge
Like Earth, Jupiter also has a liquid metal core that generates a magnetic field, producing radiation belts of high-energy protons and electrons from the impinging solar wind. Unfortunately, as a moon of Jupiter, Europa sits squarely in those radiation belts. In effect, any technology designed for Europa's surface would not only need to be able to survive the cold temperatures but also the worst radiation encountered in the solar system.

Fortunately, SiGe HBTs are ideal for this hostile environment. The SiGe HBT introduces a nanoscale Si-Ge alloy inside a typical bipolar transistor to nano-engineer its properties, effectively producing a much faster transistor while maintaining the economy-of-scale and low cost of traditional silicon transistors. SiGe HBTs have the unique ability to maintain performance under extreme radiation exposure, and their properties naturally improve at colder temperatures. Such a unique combination makes them ideal candidates for Europa exploration.

"It's not just doing the basic science and proving that SiGe works," Cressler said. "It's actually developing electronics for NASA to use on Europa. We know SiGe can survive high levels of radiation. And we know it's remains functional at cold temperatures. What we did not know is if it could do both at the same time, which is needed for Europa surface missions."

Testing the Transistors
To answer this question, the GT researchers used JPL's Dynamitron, a machine that shoots high-flux electrons at very low temperatures to test SiGe in Europa-type environments. They exposed - SiGe HBTs to one million Volt electrons to a radiation dose of five million rads of radiation (200-400 rads is lethal to humans), at 300, 200, and 115 Kelvins (-160 Celsius).

"What had never been done was to use electronics like we did in that experiment," Cressler said. "So, we worked literally for the first year to get the results that are in that paper, which is in essence definitive proof that what we claimed is, in fact, true-that SiGe does survive Europa surface conditions."

In the next two years, the GT and UT researchers will develop actual circuits from SiGe that could be used on Europa, such as radios and microcontrollers. Yet more importantly, these devices could then be seamlessly used in almost any space environment, including on the moon and Mars.

"If Europa is the worst-case environment in the solar system, and you can build these to work on Europa, then they will work anywhere," Cressler said. "This research ties together past research that we have done in my team here at Georgia Tech for a long time and shows really interesting and novel applications of these technologies. We pride ourselves on using our research to break new innovative ground and thereby enable novel applications."

Cryogenic Total-Ionizing-Dose Response of 4th-Generation SiGe HBTs using 1-MeV Electrons for Europa-Surface Applications

Related Links
Georgia Institute of Technology
Explore The Ring World of Saturn and her moons
Jupiter and its Moons
The million outer planets of a star called Sol
News Flash at Mercury

Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly

paypal only
SpaceDaily Contributor
$5 Billed Once

credit card or paypal

Scientists depict Dragonfly landing site on Saturn moon Titan
Ithaca NY (SPX) Sep 29, 2022
When NASA's 990-pound Dragonfly rotorcraft reaches the Selk crater region - the mission's target touchdown spot - on Saturn's moon Titan in 2034, Cornell's Lea Bonnefoy '15 will have helped to make it a smooth landing. Bonnefoy and her colleagues assisted the future arrival by characterizing the equatorial, hummocky, knoll-like landscape by combining and analyzing all of the radar images of the area acquired by the Cassini spacecraft during its historic 13 year exploration of the Saturn system. Th ... read more

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

NASA Crew-4 astronauts safely splash down in Atlantic

World's first space tourist plans new flight to Moon with SpaceX

Eagle-designed space drones target in-orbit construction

Cables, tie-wraps and no step

NASA's Mars mission shields up for tests

NASA's Crew-5 mission casts long exposure light beam

Musk says cannot fund Starlink in Ukraine indefinitely

Electron Rocket arrives at Wallops for inaugural Rocket Lab mission from Virginia

NASA's InSight waits out dust storm

Things that go bump in the night on Mars!

Sols 3621-3622: Planetary Power Puzzle

Sols 3614-3615: Chemin's Moment To Shine

Mengtian space lab fueled ahead of upcoming launch

Tiangong space station marks key step in assembly

China begins search for fourth astronaut generation

China launches multiple satellites in back to back launches

Amazon's Project Kuiper will now launch with ULA rockets

Phase Four unveils game changing engine for LEO constellations

Viasat and Inmarsat will work with CMA to demonstrate customer benefits of proposed transaction

First Eurostar Neo satellite launched

DLR's new optical ground station inaugurated

NASA awards contracts to assess near-space communications capabilities

Heat-proof chaotic carbides could revolutionize aerospace technology

Europe's police keep wary eye on threat from 3D-printed guns

Broccoli gas: A better way to find life in space

Blue Skies Space satellite will monitor how energy released by stars impacts exoplanet habitability

Heaviest element yet detected in an exoplanet atmosphere

A day at the beach for life on other worlds

Mars and Jupiter moons meet

NASA study suggests shallow lakes in Europa's icy crust could erupt

NASA studies origins of dwarf planet Haumea

Sharpest Earth-based images of Europa and Ganymede reveal their icy landscape

The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.