. 24/7 Space News .
ICE WORLD
Experiments lead to slip law for better forecasts of glacier speed, sea-level rise
by Staff Writers
Ames IA (SPX) Apr 03, 2020

This photo shows how experiments to simulate the huge forces involved in glacial flow deform the till underneath a ring of ice. The beads were placed vertically in the till -- a glacially deposited mix of mud, sand and rock particles -- but have been moved by the motion of ice.

Backed by experimental data from a laboratory machine that simulates the huge forces involved in glacier flow, glaciologists have written an equation that accounts for the motion of ice that rests on the soft, deformable ground underneath unusually fast-moving parts of ice sheets.

That equation - or "slip law" - is a tool that scientists can include in computer models of glacier movement over the deformable beds of mud, sand, pebbles, rocks and boulders under glaciers such as the West Antarctic Ice Sheet, said Neal Iverson, the project leader and a professor of geological and atmospheric sciences at Iowa State University. Models using the new slip law could better predict how quickly glaciers are sliding, how much ice they're sending to oceans and how that would affect sea-level rise.

A paper published online by the journal Science describes the new slip law and the experiments and data that motivate it. Authors are Lucas Zoet, a postdoctoral research associate at Iowa State from 2012 to 2015 and now an assistant professor of geoscience at the University of Wisconsin-Madison, and Iverson.

Why do glaciologists need a slip law?

"The potential collapse of the West Antarctic Ice Sheet is the single largest source of uncertainty in estimations of future sea-level rise, and this uncertainty results, in part, from imperfectly modeled ice-sheet processes," Zoet and Iverson wrote in their paper.

Glacier-in-a-freezer
Iverson started experiments with the 9-foot-tall ring-shear device inside his laboratory's walk-in freezer in 2009. At the center of the device is a ring of ice about three feet across and eight inches thick. Below the ring is a hydraulic press that can put as much as 100 tons of force on the ice and simulate the weight of a glacier 800 feet thick. Above the ring are motors that can rotate the ice at speeds of 1 to 10,000 feet per year.

The ice is surrounded by a tub of temperature-controlled, circulating fluid that keeps the ice ring right at its melting temperature so it slides on a thin film of water - just like all fast-flowing glaciers.

A $530,000 grant from the National Science Foundation supported development of the device. Iverson worked with three engineers from the U.S. Department of Energy's Ames Laboratory - Terry Herrman, Dan Jones and Jerry Musselman - to turn his ideas into a working machine.

And it has worked for about a decade, providing data on how glaciers move over rigid rock and deformable sediment.

A drag on the ice
For the experiments that led to the new slip law, Zoet drove from Ames to Madison to fill six, 5-gallon buckets with real, glacially deposited sediment called till that had the right mix of mud, sand and larger rock particles.

He'd scoop that into the ring-shear device to make the till bed. He'd then construct an ice ring above it by freezing layers of water seeded with ice crystals. He'd apply force on the ice, heat it until it was melting and turn on the machine.

"We were after the mathematical relationship between the drag holding the ice back at the bottom of the glacier and how fast the glacier would slide," Iverson said. "That included studying the effect of the difference between ice pressure on the bed and water pressure in the pores of the till - a variable called the effective pressure that controls friction."

The data indicated the relationship between "drag, slip velocity and effective pressure that is needed to model glacier flow," Iverson said.

"Glacier ice is a highly viscous fluid that slips over a substrate - in this case a deformable till bed - and friction at the bed provides the drag that holds the ice back," Iverson said. "In the absence of friction, the weight of the ice would cause it to accelerate catastrophically like some landslides."

But it's nearly impossible to get drag data in the field. Zoet said the act of drilling through the ice would change the interface between the glacier and bed, making measurements and data less accurate.

So Iverson built his laboratory device to collect that data, and Zoet has built a slightly smaller version for his Wisconsin laboratory. Zoet's machine features a transparent sample chamber so researchers can see more of what's happening during an experiment.

The resulting experimentally based slip law for glaciers moving over soft beds should make a difference in predictions of glacier movement and sea-level rise:

"Ice sheet models using our new slip relationship," Iverson said, "would tend to predict higher ice discharges to the ocean - and higher rates of sea-level rise - than slip laws currently being used in most ice sheet models."


Related Links
Iowa State University
Beyond the Ice Age


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ICE WORLD
How horses can save the permafrost
Hamburg, Germany (SPX) Mar 18, 2020
Permafrost soils in the Arctic are thawing. As they do, large additional quantities of greenhouse gases could be released, accelerating climate change. In Russia, experiments are now being conducted in which herds of horses, bison and reindeer are being used to combat this effect. A study from Universitat Hamburg, just released in the Nature journal Scientific Reports, now shows for the first time that this method could indeed significantly slow the loss of permafrost soils. Theoretically speaking ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ICE WORLD
Insects, seaweed and lab-grown meat could be the foods of the future

Construction of Russian National Space Center to be finished in Moscow in 2023

An astronaut's tips for living in space or anywhere

Boeing's first manned Starliner to be launched to ISS on 31 August

ICE WORLD
AEHF-6 launch marks 500th flight of Aerojet Rocketdyne's Rl10 engine

US Space Force launches first mission despite coronavirus

Pentagon tests hypersonic glide body in Hawaii

NASA, SpaceX plan return to human spaceflight from U.S. soil in mid-May

ICE WORLD
NASA's Curiosity Mars rover takes a new selfie before record climb

NASA's Mars Perseverance Rover Gets Its Sample Handling System

Waves in thin Martian air with wide effects

ExoMars to take off for the Red Planet in 2022

ICE WORLD
China's experimental manned spaceship undergoes tests

China's Long March-7A carrier rocket fails in maiden flight

China's Yuanwang-5 sails to Pacific Ocean for space monitoring mission

Construction of China's space station begins with start of LM-5B launch campaign

ICE WORLD
Venezuelan communications satellite out of service

RUAG Space delivered key products for Airbus OneWeb satellite launch

OneWeb launches 34 communications satellites from Kazakhstan

GMV's space business grows by 30 percent

ICE WORLD
Engineers 3D print soft, rubbery brain implants

Print sprint: Bosnians 3D print face-shields to combat coroanvirus

Zoom under scrutiny in US over privacy, porn hacks

World Centric announces new World Centric leaf fiber lids

ICE WORLD
Salmon parasite is world's first non-oxygen breathing animal

Warped Space-time to Help WFIRST Find Exoplanets

Paired with super telescopes, model Earths guide hunt for life

Planetary Science Journal launches with online papers

ICE WORLD
Jupiter's Great Red Spot shrinking in size, not thickness

Researchers find new minor planets beyond Neptune

Ultraviolet instrument delivered for ESA's Jupiter mission

One Step Closer to the Edge of the Solar System









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.