. | . |
Exoplanet mission led by UCL selected as ESA's next medium-class mission by Staff Writers London, UK (SPX) Mar 21, 2018
ARIEL, a mission to answer fundamental questions about how planetary systems form and evolve, has been selected by the European Space Agency (ESA) as its next medium-class science mission, due for launch in mid-2028. During a 4-year mission, ARIEL will observe 1,000 planets orbiting distant stars and make the first large-scale survey of the chemistry of exoplanet atmospheres. ESA's Science Programme Committee announced the selection of ARIEL from three candidate missions on 20 March 2018. The ARIEL mission has been developed by a consortium of more than 60 institutes from 15 ESA member state countries, including UK, France, Italy, Poland, Spain, the Netherlands, Belgium, Austria, Denmark, Ireland, Hungary, Sweden, Czech Republic, Germany, Portugal, with an additional contribution from NASA in the USA currently under study. UK institutions have provided the leadership and planning for ARIEL, including UCL, STFC RAL Space, STFC UK ATC, Cardiff University and the University of Oxford. ARIEL's Principal Investigator, Professor Giovanna Tinetti of UCL Physics and Astronomy said, "Although we've now discovered around 3,800 planets orbiting other stars, the nature of these exoplanets remains largely mysterious. ARIEL will study a statistically large sample of exoplanets to give us a truly representative picture of what these planets are like. This will enable us to answer questions about how the chemistry of a planet links to the environment in which it forms, and how its birth and evolution are affected by its parent star." ARIEL will study a diverse population of exoplanets ranging from Jupiter- and Neptune-size planets down to super-Earths, in a wide variety of environments. While some of the planets may be in the habitable zones of their stars, the main focus of the mission will be on warm and hot planets in orbits close to their star. Warm and hot exoplanets represent a natural laboratory in which to study the chemistry and formation of planets. High temperatures keep different molecular species circulating throughout the atmosphere and prevent them from sinking or forming cloud layers, where they can become hidden from remote detection. The scorching temperatures experienced by planets close to their stars, which can be at temperatures in excess of 2,000 degrees Celsius, also mean that more molecules from the planet's interior make their way into the atmosphere. This provides ARIEL with better information about the planet's internal composition and the formation history of the planetary system. ARIEL will have a meter-class telescope primary mirror to collect visible and infrared light from distant star systems. A spectrometer will spread the light into a 'rainbow' and extract the chemical fingerprints of gases in the planets' atmospheres, which become embedded in starlight when a planet passes in front or behind the star. A photometer and guidance system will capture information on the presence on clouds in the atmospheres of the exoplanets and will allow the spacecraft to point to the target star with high stability and precision. The payload for ARIEL will be amongst the first to be assembled and tested at the STFC RAL Space National Satellite Test Facility, due to be open in mid-2020 following Pounds 99 million investment as part of the UK Government's Industrial Strategy Challenge Fund. ARIEL will be launched from Kourou in French Guiana and will be placed in orbit around the Lagrange Point 2 (L2), a gravitational balance point 1.5 million kilometres beyond the Earth's orbit around the Sun. Here, the spacecraft is shielded from the Sun and has a clear view of the whole sky to maximise the possible target exoplanets for observations. The ARIEL Consortium Project Manager, Paul Eccleston, of STFC RAL Space said "It is wonderful news that ESA have selected ARIEL for the next medium class science mission. The team are very excited to have the opportunity to realise the mission we've been developing for the last two years. ARIEL will revolutionise our understanding of how planetary systems form and evolve, helping us put our own solar system into context and compare it to our neighbours in the galaxy."
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |