. | . |
Engineers detail bird feather properties that could lead to better adhesives by Staff Writers San Diego CA (SPX) Jan 17, 2019
You may have seen a kid play with a feather, or you may have played with one yourself: Running a hand along a feather's barbs and watching as the feather unzips and zips, seeming to miraculously pull itself back together. That "magical" zipping mechanism could provide a model for new adhesives and new aerospace materials, according to engineers at the University of California San Diego. They detail their findings in the Jan. 16 issue of Science Advances in a paper titled "Scaling of bird wings and feathers for efficient flight." Researcher Tarah Sullivan, who earned a Ph.D. in materials science from the Jacobs School of Engineering at UC San Diego, is the first in about two decades to take a detailed look at the general structure of bird feathers (without focusing on a specific species). She 3D-printed structures that mimic the feathers' vanes, barbs and barbules to better understand their properties - for example, how the underside of a feather can capture air for lift, while the top of the feather can block air out when gravity needs to take over. Sullivan found that barbules - the smaller, hook-like structures that connect feather barbs - are spaced within 8 to 16 micrometers of one another in all birds, from the hummingbird to the condor. This suggests that the spacing is an important property for flight. "The first time I saw feather barbules under the microscope I was in awe of their design: intricate, beautiful and functional," she said. "As we studied feathers across many species it was amazing to find that despite the enormous differences in size of birds, barbules spacing was constant." Sullivan believes studying the vane-barb-barbule structure further could lead to the development of new materials for aerospace applications, and to new adhesives - think Velcro and its barbs. She built prototypes to prove her point, which she will discuss in a follow up paper. "We believe that these structures could serve as inspiration for an interlocking one-directional adhesive or a material with directionally tailored permeability," she said. Sullivan, who is part of the research group of Marc Meyers, a professor in the Departments of Nanoengineering and Mechanical and Aerospace Engineering at UC San Diego, also studied the bones found in bird wings. Like many of her predecessors, she found that the humerus - the long bone in the wing - is bigger than expected. But she went a step further: using mechanics equations, she was able to show why that is. She found that because bird bone strength is limited, it can't scale up proportionally with the bird's weight. Instead it needs to grow faster and be bigger to be strong enough to withstand the forces it is subject to in flight. T his is known as allometry - the growth of certain parts of body at different rates than the body as a whole. The human brain is allometric: in children, it grows much faster than the rest of the body. By contrast, the human heart grows proportionally to the rest of the body - researchers call this isometry. "Professor Eduard Arzt, our co-author from Saarland University in Germany, is an amateur pilot and became fascinated by the 'bird wing' problem. Together, we started doing allometric analyses on them and result is fascinating," said Meyers. "This shows that the synergy of scientists from different backgrounds can produce wonderful new understanding."
Kiel physicists discover new effect in the interaction of plasmas with solids Kiel, Germany (SPX) Jan 17, 2019 Plasmas - hot gases consisting of chaotically-moving electrons, ions, atoms and molecules - can be found inside of stars, but they are also artificially created using special equipment in the laboratory. If a plasma comes in contact with a solid, such as the wall of the lab equipment, under certain circumstances the wall is changed fundamentally and permanently: atoms and molecules from the plasma can be deposited on the solid material, or energetic plasma ions can knock atoms out of the solid, an ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |