. 24/7 Space News .
CARBON WORLDS
Electrogeochemistry captures carbon, produces fuel, offsets ocean acidification
by Staff Writers
Santa Cruz CA (SPX) Jul 06, 2018

illustration only

Limiting global warming to 2 degrees Celsius will require not only reducing emissions of carbon dioxide, but also active removal of carbon dioxide from the atmosphere. This conclusion from the Intergovernmental Panel on Climate Change has prompted heightened interest in "negative emissions technologies."

A new study published June 25 in Nature Climate Change evaluates the potential for recently described methods that capture carbon dioxide from the atmosphere through an "electrogeochemical" process that also generates hydrogen gas for use as fuel and creates by-products that can help counteract ocean acidification.

First author Greg Rau, a researcher in the Institute of Marine Sciences at UC Santa Cruz and visiting scientist at Lawrence Livermore National Laboratory, said this technology significantly expands the options for negative emissions energy production.

The process uses electricity from a renewable energy source for electrolysis of saline water to generate hydrogen and oxygen, coupled with reactions involving globally abundant minerals to produce a solution that strongly absorbs and retains carbon dioxide from the atmosphere. Rau and other researchers have developed several related methods, all of which involve electrochemistry, saline water, and carbonate or silicate minerals.

"It not only reduces atmospheric carbon dioxide, it also adds alkalinity to the ocean, so it's a two-pronged benefit," Rau said. "The process simply converts carbon dioxide into a dissolved mineral bicarbonate, which is already abundant in the ocean and helps counter acidification."

The negative emissions approach that has received the most attention so far is known as "biomass energy plus carbon capture and storage" (BECCS). This involves growing trees or other bioenergy crops (which absorb carbon dioxide as they grow), burning the biomass as fuel for power plants, capturing the emissions, and burying the concentrated carbon dioxide underground.

"BECCS is expensive and energetically costly. We think this electrochemical process of hydrogen generation provides a more efficient and higher capacity way of generating energy with negative emissions," Rau said.

He and his coauthors estimated that electrogeochemical methods could, on average, increase energy generation and carbon removal by more than 50 times relative to BECCS, at equivalent or lower cost. He acknowledged that BECCS is farther along in terms of implementation, with some biomass energy plants already in operation. Also, BECCS produces electricity rather than less widely used hydrogen.

"The issues are how to supply enough biomass and the cost and risk associated with putting concentrated carbon dioxide in the ground and hoping it stays there," Rau said.

The electrogeochemical methods have been demonstrated in the laboratory, but more research is needed to scale them up. The technology would probably be limited to sites on the coast or offshore with access to saltwater, abundant renewable energy, and minerals.

Coauthor Heather Willauer at the U.S. Naval Research Laboratory leads the most advanced project of this type, an electrolytic-cation exchange module designed to produce hydrogen and remove carbon dioxide through electrolysis of seawater. Instead of then combining the carbon dioxide and hydrogen to make hydrocarbon fuels (the Navy's primary interest), the process could be modified to transform and store the carbon dioxide as ocean bicarbonate, thus achieving negative emissions.

"It's early days in negative emissions technology, and we need to keep an open mind about what options might emerge," Rau said. "We also need policies that will foster the emergence of these technologies."

Research paper


Related Links
University of California - Santa Cruz
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


CARBON WORLDS
Physicists solve the mystery of vanishing particles in graphene
Moscow, Russia (SPX) Jun 20, 2018
Researchers from the Moscow Institute of Physics and Technology and Tohoku University (Japan) have explained the puzzling phenomenon of particle-antiparticle annihilation in graphene, recognized by specialists as Auger recombination. Although persistently observed in experiments, it was for a long time thought to be prohibited by the fundamental physical laws of energy and momentum conservation. The theoretical explanation of this process has until recently remained one of the greatest puzzles of solid- ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
NASA leverages public and private partnerships for space science with AI boost

It's in the blood: guiding rafts down Poland's mountain gorge

New head of 'space nation' aims for the stars

Hague, Ovchinin talk ISS mission during presser

CARBON WORLDS
Dragon delivers some ICE

'Flying brain' blasts off on cargo ship toward space station

Dawn's Engines Complete Firing, Science Continues

Maverick entrepreneur's space rocket fails at blast off

CARBON WORLDS
Mars valleys traced back to precipitation

The meteorite 'Black Beauty' expands the window for when life might have existed on Mars

Precipitation explains Mars' fluvial patterns, astronomers claim

Opportunity sleeps during a planet-encircling dust storm

CARBON WORLDS
China Rising as Major Space Power

China launches new-tech experiment twin satellites

China confirms reception of data from Gaofen-6 satellite

Experts Explain How China Is Opening International Space Cooperation

CARBON WORLDS
GomSpace and Aerial Maritime Ltd enter MOU for delivery and operation of a global constellation

SSL ships first of 3 ComSats slated for launch this summer

Forget Galileo - UK space sector should look to young stars instead

A milestone in securing ESA's future role in the global exploration of space

CARBON WORLDS
Sandia light mixer generates 11 colors simultaneously

Probing nobelium with laser light

Hope for new catalysts with high activity

Smarter, faster algorithm cuts number of steps to solve problems

CARBON WORLDS
Researchers see beam of light from first confirmed neutron star merger emerge from behind sun

Detecting the Boiling Atmosphere of the Hottest Known Exoplanet

More clues that Earth-like exoplanets are indeed Earth-like

First confirmed image of newborn planet caught with ESO's VLT

CARBON WORLDS
Webb Telescope to target Jupiter's Great Red Spot

Charon at 40: four decades of discovery on Pluto's largest moon

A dark and stormy Jupiter

NASA shares more Pluto images from New Horizons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.