
KAIST announced on November 17th that a research team led by Professor Young-Sik Ra from the Department of Physics has developed a Multimode Quantum Process Tomography technique capable of efficiently identifying the characteristics of second-order nonlinear optical quantum processes that are essential for optical quantum computing.
With the newly developed technique, the research team is now able to clearly determine what actually happens inside an optical quantum computer, as if taking a CT scan.
This method analyzes how input states change under a given operation using two key components: the 'Amplification matrix,' which describes how the mean fields of light are transformed, and the 'Noise matrix,' which captures the noise or loss introduced through environmental interactions.
Together, these components create a 'quantum state map' that enables accurate and simultaneous observation of both the ideal quantum evolution of light (unitary changes) and the unavoidable noise (non-unitary changes) present in real devices. This leads to a much more realistic characterization of how an optical quantum computer actually operates.
Using this approach, the research team dramatically reduced the amount of measurement data required. Whereas existing methods quickly become impractical - requiring enormous datasets even for systems with slightly more than a few modes and typically limiting analysis to about five modes - the new technique overcomes this bottleneck. The team successfully performed the world's first experimental characterization of a large-scale optical quantum operation involving 16 modes, an unprecedented milestone in the field.
Professor Young-Sik Ra stated, "This research significantly increases the efficiency of Quantum Process Tomography, a foundational technology essential for quantum computing. The acquired technology will greatly contribute to enhancing the scalability and reliability of various quantum technologies, including quantum computing, quantum communication, and quantum sensing."
Research Report:Completely characterizing multimode second-order nonlinear optical quantum processes
Related Links
The Korea Advanced Institute of Science and Technology (KAIST)
Understanding Time and Space
| Subscribe Free To Our Daily Newsletters |
| Subscribe Free To Our Daily Newsletters |