![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Daegu, South Korea (SPX) Oct 20, 2022
Two research teams, one led by Professor Jeongho Kwak of the Department of Electrical Engineering and Computer Science at DGIST (President Kuk Yang) and the other by Professor Jihwan Choi of the Department of Aerospace Engineering at KAIST (President Kwang Hyung Lee), have developed new edge-computing offloading and network-slicing techniques that can be utilized in next-generation low Earth orbit (LEO) satellite network systems. "LEO satellite network" refers to a communication network that provides stable Internet services using satellites that orbit 300-1500 km from Earth. Unlike base stations built on the ground, to and from which radio waves are occasionally obstructed by mountains or buildings, LEO satellites can be used to build communication networks in locations where base stations are difficult to deploy owing to low population density by launching the satellites into orbit. Therefore, LEO satellite networks have received attention as next-generation satellite-communication systems that can rapidly provide communication services to more diverse regions. Edge computing differs from cloud computing in that data is processed in each device in a distributed manner. Since data is processed and the computational results are applied to the edge where the data is collected, congestion in the data center can be mitigated. Although studies on edge computing in existing terrestrial networks have been actively conducted, a different approach is needed to apply edge computing to LEO satellites. This is because all satellite components of the core networks, including LEO satellite networks, are connected wirelessly, and the satellites orbit around the Earth at a very high speed. Furthermore, the satellites have a lower power supply and computing power than terrestrial networks. Therefore, customized solutions are needed for new areas that have not been covered by terrestrial networks. Therefore, Professor Jeongho Kwak and Professor Jihwan Choi's research teams proposed a network slicing technique[1] that harnesses the distribution and movement characteristics of LEO satellites and the characteristics of wireless-channel environments in a scenario with several virtualized services. At the same time, they also proposed a code and data-offloading technique[2] for satellite-edge computing. The edge-computing and slicing techniques developed for LEO satellites in this research are significant because they advance the domestic satellite network technology one step further. However, in South Korea, this technology is still in the early stages compared with overseas countries, where LEO satellite Internet services such as Elon Musk's Starlink are being commercialized. Professor Jeongho Kwak of the Department of Electrical Engineering and Computer Science at DGIST stated, "This research analyzed the effect of network slicing and code/data offloading ratio according to the changing LEO satellite environment." He added, "Our goal is to provide a blueprint for novel applications for LEO satellites in the 6G era in the future." Meanwhile, the research results were published in the IEEE Internet of Things Journal on August 1, 2022, with Taeyeon Kim, a Ph.D. student of the Department of Electrical Engineering and Computer Science at DGIST, as the first author. [1] Network slicing: A technology that can provide personalized services by dividing one physical "core network" into multiple virtual networks. [2] Offloading technique: Distributes rapidly increasing data traffic to other networks
Research Report:Satellite Edge Computing Architecture and Network Slice Scheduling for IoT Support
![]() ![]() SpaceX announces Starlink Internet service on airplanes Washington DC (UPI) Oct 19, 2021 SpaceX announced that its satellite internet service Starlink will be available on select airplanes beginning next year. Starlink Aviation will offer Internet speeds of up to 350 Mbps to each plane that is equipped with its Aero Terminal, which it says is fast enough for video calls, online gaming, "and other high data rate activities." "With Starlink, passengers will be able to access high-speed, low-latency internet from the moment they walk on their plane," SpaceX said in a tweet. ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |