. 24/7 Space News .
EARTH OBSERVATION
Earth's magnetic field is not about to flip
by Staff Writers
New York NY (SPX) Nov 25, 2015


This is an artistic impression of how auroras could be more widespread under a geomagnetic field much weaker than today's. Image courtesy Huapei Wang, with source files courtesy of NASA's Earth Observatory/NOAA/DOD. For a larger version of this image please go here.

The intensity of earth's magnetic field has been weakening in the last couple of hundred years, leading some scientists to think that its polarity might be about to flip. But the field's intensity may simply be coming down from an abnormal high rather than approaching a reversal, scientists write in a new paper in the Proceedings of the National Academy of Sciences.

Humans have lived through dips in the field's intensity before, and there are debates about whether reversals in the more distant past had any connection to species extinctions. Today, we have something else today that would be affected by weakening of the magnetic field alone: technology. The magnetic field deflects the solar wind and cosmic rays. When the field is weaker, more radiation gets through, which can disrupt power grids and satellite communications.

"The field may be decreasing rapidly, but we're not yet down to the long-term average. In 100 years, the field may even go back the other direction [in intensity]," said Dennis Kent, an expert in paleomagnetism at Columbia University's Lamont-Doherty Earth Observatory and co-author of the study with his former student, Huapel Wang, now a post-doctoral research associate at MIT, and Pierre Rochette of Aix-Marseille Universite.

The scientists used a new technique to measure changes in the magnetic field's strength in the past and found that its long-term average intensity over the past five million years was much weaker than the global database of paleointensity suggests - only about 60 percent of the field's strength today. The findings raise questions both about claims that the magnetic field may be nearing a reversal and about the database itself.

The study's results fit expectations that the magnetic field's intensity at the poles should be twice its intensity at the equator. In contrast, the time-averaged intensity calculated from the PINT paleointensity database doesn't meet the two-to-one, poles-to-equator dipole hypothesis, and the database calculation suggests that the long-term average intensity over the past 5 million years is similar to the field's intensity today.

The authors believe the difference is in how the samples are analyzed. They say the database, which catalogs paleointensity data from published papers, includes a variety of methods and doesn't clearly delineate data from two different types of magnetized mineral samples, tiny single-domain grains that come from sites that cooled quickly, like basalt glass on the outer edges of lava flows, and more common larger multi-domain grains found deeper inside lava whose magnetic behavior is more complex and require a different type of analysis.

Earth's magnetic poles have reversed several hundred times over the past 100 million years, most recently about 780,000 years ago. Some scientists believe a dip in the magnetic field's intensity 41,000 years ago was also a brief reversal. When scientists recently began noticing a decline in the magnetic field - about 10 percent over the past two centuries - it led to speculation that another reversal could be coming. That doesn't mean it would happen quickly, if it happens at all. The magnetic field's intensity rises and dips without a clear pattern, only sometimes dipping far enough to become unstable and possibly reverse. During a reversal, geomagnetic intensity declines during a transition period that typically lasts hundreds to thousands of years, then rebuilds.

For the new study, the scientists used ancient lava flows from sites near the equator and compared the paleointensity data with what had been regarded as an anomalously low intensity obtained by others from lavas from near the South Pole. As lava cools, iron-bearing minerals form inside and act like tiny magnets, aligning with the Earth's magnetic field. Scientists can analyze ancient lava to determine both the direction and the intensity of the magnetic field at the time the lava formed.

For the new study, the scientists used ancient lava flows from sites near the equator and compared the paleointensity data with from lavas collected near the South Pole. As lava cools, iron-bearing minerals form inside and act like tiny magnets, aligning with the Earth's magnetic field. Scientists can analyze ancient lava to determine both the direction and the intensity of the magnetic field at the time the lava formed.

The scientists used a new technique for analyzing multi-domain samples. They worked with a representative range from the past 5 million years using 27 lavas from the Galapagos Islands, about 1 degree of latitude from the equator. The results were then compared to those from 38 lavas with single-domain properties from a volcanic area near McMurdo Station in Antarctica, about 12 degrees from the South Pole.

When they averaged the geomagnetic intensity of each set, it revealed close to a two-to-one intensity difference between the polar site and the equatorial site, fitting the geocentric axial dipole (GAD) hypothesis, on which most paleogeographic reconstructions rely.

The results show that the time-averaged geomagnetic field intensity over the past 5 million years is about 60 percent of the field's intensity today and aligns with the GAD hypothesis, both in direction and intensity. Other studies using only single-domain basalt glass from the ocean floor have found a similar time-averaged intensity, but they did not have samples to test the polar-equator ratio. The agreement helps to validate the new multiple-domain analysis technique, Kent said.

The lower time-averaged paleointensity also suggests a shorter average magnetopause standoff distance--the distance at which the Earth's magnetic field repels the solar wind. The average is about 9 times the Earth's radius compared to nearly 11 times the Earth's radius today, according to the paper. A shorter standoff distance results in stronger radiation at Earth's surface and in the atmosphere, causing more frequent low-latitude auroras.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
The Earth Institute at Columbia University
Earth Observation News - Suppiliers, Technology and Application






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
EARTH OBSERVATION
New satellite to measure plant health
Paris (ESA) Nov 22, 2015
ESA plans to track the health of the world's vegetation by detecting and measuring the faint glow that plants give off as they convert sunlight and the atmosphere's carbon dioxide into energy. Yielding information about the health and stress of the planet's vegetation is important as the growing global population places increasing demands on the production of food and animal feed. Fo ... read more


EARTH OBSERVATION
Gaia's sensors scan a lunar transit

SwRI scientists explain why moon rocks contain fewer volatiles than Earth's

All-female Russian crew starts Moon mission test

Russian moon mission would need 4 Angara-A5V launches

EARTH OBSERVATION
ExoMars prepares to leave Europe for launch site

Tracking down the 'missing' carbon from the Martian atmosphere

Mars to lose its largest moon, Phobos, but gain a ring

Study: Mars to become a ringed planet following death of its moon

EARTH OBSERVATION
The Ins and Outs of NASA's First Launch of SLS and Orion

Aerojet Rocketdyne tapped for spacecraft's crew module propulsion

Brits Aim for the Stars with Big Bucks on Offer to Conquer Final Frontier

XCOR develops Lynx Simulator

EARTH OBSERVATION
China launches Yaogan-29 remote sensing satellite

China's indigenous SatNav performing well after tests

China's scientific satellites to enter uncharted territory

China to launch Dark Matter Satellite in mid-December

EARTH OBSERVATION
Russian-US Space Collaboration Intact Despite Chill in Bilateral Ties

ISS EarthKAM ready for student imaging request

Partners in Science: Private Companies Conduct Valuable Research on the Space Station

SAGE III Leaves Langley for Journey to ISS

EARTH OBSERVATION
Rocket launch demonstrates new capability for testing technologies

Atlas V booster lands at Vandenberg

Vega receives the LISA Pathfinder payload for its December 2 flight

NASA Orders SpaceX Crew Mission to International Space Station

EARTH OBSERVATION
Retro Exo and Its Originators

How DSCOVR Could Help in Exoplanet Hunting

Forming planet observed for first time

UA researchers capture first photo of planet in making

EARTH OBSERVATION
SSL selected to provide new high throughput satellite to Telesat

Satellite Spectrum Is Central To Future Vision For Global Connectivity

Virtual reality app brings crisis zones closer to home

Plant defense as a biotech tool









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.