. 24/7 Space News .
STELLAR CHEMISTRY
ESO telescope captures the disappearance of a massive star
by Staff Writers
Munich, Germany (SPX) Jul 01, 2020

This illustration shows what the luminous blue variable star in the Kinman Dwarf galaxy could have looked like before its mysterious disappearance.

Using the European Southern Observatory's Very Large Telescope (VLT), astronomers have discovered the absence of an unstable massive star in a dwarf galaxy. Scientists think this could indicate that the star became less bright and partially obscured by dust. An alternative explanation is that the star collapsed into a black hole without producing a supernova. "If true," says team leader and PhD student Andrew Allan of Trinity College Dublin, Ireland, "this would be the first direct detection of such a monster star ending its life in this manner."

Between 2001 and 2011, various teams of astronomers studied the mysterious massive star, located in the Kinman Dwarf galaxy, and their observations indicated it was in a late stage of its evolution. Allan and his collaborators in Ireland, Chile and the US wanted to find out more about how very massive stars end their lives, and the object in the Kinman Dwarf seemed like the perfect target.

But when they pointed ESO's VLT to the distant galaxy in 2019, they could no longer find the telltale signatures of the star. "Instead, we were surprised to find out that the star had disappeared!" says Allan, who led a study of the star published in Monthly Notices of the Royal Astronomical Society.

Located some 75 million light-years away in the constellation of Aquarius, the Kinman Dwarf galaxy is too far away for astronomers to see its individual stars, but they can detect the signatures of some of them. From 2001 to 2011, the light from the galaxy consistently showed evidence that it hosted a 'luminous blue variable' star some 2.5 million times brighter than the Sun. Stars of this type are unstable, showing occasional dramatic shifts in their spectra and brightness.

Even with those shifts, luminous blue variables leave specific traces scientists can identify, but they were absent from the data the team collected in 2019, leaving them to wonder what had happened to the star. "It would be highly unusual for such a massive star to disappear without producing a bright supernova explosion," says Allan.

The group first turned the ESPRESSO instrument toward the star in August 2019, using the VLT's four 8-metre telescopes simultaneously. But they were unable to find the signs that previously pointed to the presence of the luminous star. A few months later, the group tried the X-shooter instrument, also on ESO's VLT, and again found no traces of the star.

"We may have detected one of the most massive stars of the local Universe going gently into the night," says team-member Jose Groh, also of Trinity College Dublin. "Our discovery would not have been made without using the powerful ESO 8-metre telescopes, their unique instrumentation, and the prompt access to those capabilities following the recent agreement of Ireland to join ESO." Ireland became an ESO member state in September 2018.

The team then turned to older data collected using X-shooter and the UVES instrument on ESO's VLT, located in the Chilean Atacama Desert, and telescopes elsewhere."The ESO Science Archive Facility enabled us to find and use data of the same object obtained in 2002 and 2009," says Andrea Mehner, a staff astronomer at ESO in Chile who participated in the study.

"The comparison of the 2002 high-resolution UVES spectra with our observations obtained in 2019 with ESO's newest high-resolution spectrograph ESPRESSO was especially revealing, from both an astronomical and an instrumentation point of view."

The old data indicated that the star in the Kinman Dwarf could have been undergoing a strong outburst period that likely ended sometime after 2011. Luminous blue variable stars such as this one are prone to experiencing giant outbursts over the course of their life, causing the stars' rate of mass loss to spike and their luminosity to increase dramatically.

Based on their observations and models, the astronomers have suggested two explanations for the star's disappearance and lack of a supernova, related to this possible outburst. The outburst may have resulted in the luminous blue variable being transformed into a less luminous star, which could also be partly hidden by dust.

Alternatively, the team says the star may have collapsed into a black hole, without producing a supernova explosion. This would be a rare event: our current understanding of how massive stars die points to most of them ending their lives in a supernova.

Future studies are needed to confirm what fate befell this star. Planned to begin operations in 2025, ESO's Extremely Large Telescope (ELT) will be capable of resolving stars in distant galaxies such as the Kinman Dwarf, helping to solve cosmic mysteries such as this one.

Research Report: "The possible disappearance of a massive star in the low metallicity galaxy PHL 293B"


Related Links
ESO
Stellar Chemistry, The Universe And All Within It


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


STELLAR CHEMISTRY
Array of radio telescopes reveals explosion on the surface of a hot dead star
Paris, France (SPX) Jun 30, 2020
An international group of researchers observed a source of variable gamma rays identified in 2010 by the NASA satellite Fermi. They used a technique called VLBI, that combines data from several radio telescopes on Earth, to produce the sharpest images to date. Surprisingly, the source of gamma rays was a symbiotic nova, a peculiar stellar system known to astronomers as V407 Cyg. The result, with first author Marcello Giroletti (National Institute of Astrophysics INAF, Italy), has been presented at ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

STELLAR CHEMISTRY
Iconic '2001: A Space Odyssey' suit to hit auction block

Russia plans to take first tourist on space walk in 2023

Astronauts complete spacewalk outside space station

Orion's 'Twin' Completes Structural Testing for Artemis I Mission

STELLAR CHEMISTRY
NASA Plans for More SLS Rocket Boosters to Launch Artemis Moon Missions

Russia's Roscosmos Reveals Cost of Angara Heavy-Lift Rocket for Defence Ministry

Virgin Galactic's SpaceShipTwo Completes Second Flight from Spaceport America

SpaceX scrubs Starlink launch with two BlackSky satellites

STELLAR CHEMISTRY
Mud downpours might have formed some of Mars's ancient highlands

SwRI scientists demonstrate speed, precision of in situ planetary dating device

NASA takes first step to allow computers to decide what to tell us in search for life on Mars

How NASA's Mars Helicopter Will Reach the Red Planet's Surface

STELLAR CHEMISTRY
China's tracking ship wraps up satellite launch monitoring

Final Beidou launch marks major milestone in China's space effort

Satellite launch center Wenchang eyes boosting homestay, catering sectors

Private investment fuels China commercial space sector growth

STELLAR CHEMISTRY
US May Freeze OneWeb Sale in Blow to UK Hopes for Own Sat-Nav System

UK space hub gets go ahead

NASA moving forward to enable a low-earth orbit economy

India ends monopoly of ISRO with new entity to facilitate private players

STELLAR CHEMISTRY
ThinKom demonstrates IFC antenna interoperability with LEO, MEO and GEO satellites

Rocket Lab to launch Kleos Space data collecting payload

NXTCOMM unveils design of AeroMax flat panel antenna for airlines

Quantum rings in the hold of laser light

STELLAR CHEMISTRY
Space Team Theorizes Rare Exomoon Discovery

Astronomers measure spin-orbit alignment of a distant super-Jupiter

First measurement of spin-orbit alignment on planet Beta Pictoris b

An experiment in recreating primordial proteins solves a long-standing riddle

STELLAR CHEMISTRY
Ocean in Jupiter's moon Europa "could be habitable"

Evidence supports 'hot start' scenario and early ocean formation on Pluto

Proposed NASA Mission Would Visit Neptune's Curious Moon Triton

SOFIA finds clues hidden in Pluto's haze









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.