. 24/7 Space News .
TIME AND SPACE
Discovery in the Early Universe Poses Black Hole Growth Puzzle
by Staff Writers
Heidelberg, Germany (SPX) May 12, 2017


"By simulating how the light from quasars ionizes and heats gas around them, we can predict how large the proximity zone of each quasar should be," explains Frederick Davies, a postdoctoral researcher at MPIA who is an expert in the interaction between quasar light and intergalactic gas. Once the quasar has been "switched on" by infalling matter, these proximity zones grow very quickly. "Within a lifetime of 100,000 years, quasars should already have large proximity zones." (illustration only)

Within the heart of every massive galaxy lurks a supermassive black hole. How these black holes formed, and how they have grown to be as massive as millions or even billions of Suns, is an open question.

At least some phases of vigorous growth are highly visible to astronomical observers: Whenever there are substantial amounts of gas swirling into the black hole, matter in the direct vicinity of the black hole emits copious amount of light. The black hole has intermittently turned into a quasar, one of the most luminous objects in the universe.

Now, researchers from the Max Planck Institute for Astronomy (MPIA) have discovered three quasars that challenge conventional wisdom on black hole growth. These quasars are extremely massive, but should not have had sufficient time to collect all that mass.

The discovery, which is based on observations at the W. M. Keck observatory in Hawaii, glimpses into ancient cosmic history: Because of their extreme brightness, quasars can be observed out to large distances.

The astronomers observed quasars whose light took nearly 13 billion years to reach Earth. In consequence, the observations show these quasars not as they are today, but as they were almost 13 billion years ago, less than a billion years after the big bang.

The quasars in question have about a billion times the mass of the Sun. All current theories of black hole growth postulate that, in order to grow that massive, the black holes would have needed to collect infalling matter, and shine brightly as quasars, for at least a hundred million years. But these three quasars proved to be have been active for a much shorter time, less than 100,000 years.

"This is a surprising result," explains Christina Eilers, a doctoral student at MPIA and lead author of the present study. "We don't understand how these young quasars could have grown the supermassive black holes that power them in such a short time."

To determine how long these quasars had been active, the astronomers examined how the quasars had influenced their environment - in particular, they examined heated, mostly transparent "proximity zones" around each quasar.

"By simulating how the light from quasars ionizes and heats gas around them, we can predict how large the proximity zone of each quasar should be," explains Frederick Davies, a postdoctoral researcher at MPIA who is an expert in the interaction between quasar light and intergalactic gas. Once the quasar has been "switched on" by infalling matter, these proximity zones grow very quickly. "Within a lifetime of 100,000 years, quasars should already have large proximity zones."

Surprisingly, three of the quasars had very small proximity zones - indicating that the active quasar phase cannot have set in more than 100,000 years earlier.

"No current theoretical models can explain the existence of these objects," says Professor Joseph Hennawi, who leads the research group at MPIA that made the discovery. "The discovery of these young objects challenges the existing theories of black hole formation and will require new models to better understand how black holes and galaxies formed."

The astronomers have already planned their next steps. "We would like to find more of these young quasars," says Christina Eilers.

"While finding these three unusual quasars might have been a fluke, finding additional examples would imply that a significant fraction of the known quasar population is much younger than expected." The scientists have already applied for telescope time to observe several additional candidates.

The results, they hope, will constrain new theoretical models about the formation of the first supermassive black holes in the universe - and, by implication, help astronomers understand the history of the giant supermassive black holes at the center of present-day galaxies like our own Milky Way.

"Implications of z ~ 6 Quasar Proximity Zones for the Epoch of Reionisation and Quasar Lifetimes," A. C. Eilers et al., 2017 May 2, Astrophysical Journal

TIME AND SPACE
Merging galaxies have enshrouded black holes
Pasadena CA (JPL) May 10, 2017
Black holes get a bad rap in popular culture for swallowing everything in their environments. In reality, stars, gas and dust can orbit black holes for long periods of time, until a major disruption pushes the material in. A merger of two galaxies is one such disruption. As the galaxies combine and their central black holes approach each other, gas and dust in the vicinity are pushed onto ... read more

Related Links
Max Planck Institute For Astronomy
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
'Awesomesauce,' proclaims US astronaut on historic spacewalk

Six-legged livestock - sustainable food production

External commercial ISS platform starts second mission

NASA Receives Proposals for Future Solar System Mission

TIME AND SPACE
SpaceX launches Inmarsat communications satellite

Testing Prepares NASA's Space Launch System for Liftoff

N. Korea's 'new missile' has unprecedented range: experts

NASA Affirms Plan for First Mission of SLS, Orion

TIME AND SPACE
Opportunity Reaches 'Perseverance Valley'

Ancient Mars impacts created tornado-like winds that scoured surface

Mars Rover Opportunity Begins Study of Valley's Origin

Seasonal Flows in Valles Marineris

TIME AND SPACE
A cabin on the moon? China hones the lunar lifestyle

China tests 'Lunar Palace' as it eyes moon mission

China to conduct several manned space flights around 2020

Reach for the Stars: China Plans to Ramp Up Space Flight Activity

TIME AND SPACE
Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

AIA report outlines policies needed to boost the US Space Industry competitiveness

Blue Sky Network Targets Key Markets For Iridium SATCOM Solutions

How Outsourcing Your Satellite Related Services Saves You Time and Money

TIME AND SPACE
"Airbus Friedrichshafen: new satellite hub lays groundwork for the future"

Physics may bring faster solutions for tough computational problems

A bath for precision printing of 3-D silicone structures

Physical keyboards make virtual reality typing easier

TIME AND SPACE
'Warm Neptune' Has Unexpectedly Primitive Atmosphere

Astrophysicists find that planetary harmonies around TRAPPIST-1 save it from destruction

Two Webb instruments well suited for detecting exoplanet atmospheres

Variable Winds on Hot Giant Exoplanet Help Study of Magnetic Field

TIME AND SPACE
Waves of lava seen in Io's largest volcanic crater

Not So Great Anymore: Jupiter's Red Spot Shrinks to Smallest Size Ever

The PI's Perspective: No Sleeping Back on Earth!

ALMA investigates 'DeeDee,' a distant, dim member of our solar system









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.