. 24/7 Space News .
IRON AND ICE
Discovery about meteorites informs atmospheric entry threat assessment
by Staff Writers
Urbana IL (SPX) Sep 21, 2021

stock illustration only

Researchers at the University of Illinois Urbana-Champaign watched fragments of two meteors as they ramped up the heat from room temperature to the temperature it reaches as it enters Earth's atmosphere and made a significant discovery. The vaporized iron sulfide leaves behind voids, making the material more porous. This information will help when predicting the weight of a meteor, its likelihood to break apart, and the subsequent damage assessment if it should land.

"We extracted samples from the interiors that had not already been exposed to the high heat of the entry environment," said Francesco Panerai, professor in the Department of Aerospace Engineering at UIUC. "We wanted to understand how the microstructure of a meteorite changes as it travels through the atmosphere."

Panerai and collaborators at NASA Ames Research Center used an X-ray microtomography technique that allowed them to observe the samples in place as they were heated up to 2,200 degrees Fahrenheit and create images in three dimensions. The experiments were performed using the synchrotron Advanced Light Source at Lawrence Berkeley National Laboratory. "The iron sulfide inside the meteorite vaporized as it heated. Some of the grains actually disappeared leaving large voids in the material," Panerai said. "We were surprised by this observation. The ability to look at the interior of the meteorite in 3D, while being heated, led us to discover a progressive increase of material porosity with heating. After that, we took cross sections of the material and looked at the chemical composition to understand the phase that had been modified by the heating, changing its porosity.

"This discovery provides evidence that meteorite materials become porous and permeable, which we speculate will have an effect on its strength and propensity for fragmentation."

NASA selected Tamdakht as case study, a meteorite that landed in a Moroccan desert a few years ago. But the team of researchers wanted to corroborate what they'd seen so they repeated experiments on Tenham to see if a meteorite with different composition would behave in the same way. Both specimens were from a similar class of meteorite called chondrites, the most common among the meteorite finds that are made up of iron and nickel, which are high-density elements.

"Both became porous, but the porosity that develops depends upon the content of the sulfides," Panerai said. "One of the two had higher iron sulfides, which is what evaporates. We found that the vaporizing of iron sulfides happens at mild entry temperatures. This is something that would happen, not at the external fusion crust of the meteorite where the temperature is a lot higher, but just underneath the surface."

The study was motivated by the potential threat meteorites pose humans--the clearest example being the Chelyabinsk meteor that blasted the Earth's atmosphere over Russia in 2013 and resulted in about 1,500 people being injured from indirect effects such as broken glass from the shock wave. After that incident, NASA created the Asteroid Threat Assessment Program to provide scientific tools that can help decision makers understand potential meteorite threats to the population.

"Most of the cosmic material burns away as it enters. The atmosphere protects us," Panerai said. "But there are significant sized meteorites that can be harmful. For these larger objects that have a non-zero probability of hitting us, we need to have tools to predict what damage they would do if they would hit Earth. Based on these tools, we can predict how it enters the atmosphere, its size, how it behaves as it goes through the atmosphere, etc. so decision makers can take counter measures."

Panerai said the Asteroid Threat Assessment Program is currently developing models to show how meteorites behave and models require a lot of data. "We used machine learning for the data analysis because the amount of data to analyze is huge and we need efficient techniques.

"We are also using tools refined over the years for the design of hypersonic entry vehicle and transferring this knowledge to the study of meteoroids, the only hypersonic systems in nature, which is very exciting. This provides NASA with critical data on the microstructure and morphology of how a common meteorite behaves during heating, so that those features can be integrated in those models."

"Morphological Evolution of Ordinary Chondrite Microstructure During Heating: Implications for Atmospheric Entry"


Related Links
Department of Aerospace Engineering at UIUC.
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Perfect for the Perseid Meteor Shower
Washington DC (SPX) Aug 10, 2021
The Perseid meteor shower, a celestial event beloved by millions of skywatchers around the world, is about to make its annual return to the night sky. The shower is predicted to reach its peak before dawn on Thursday, August 12th, though the display could put on a fine show for a night or two before and after. Late on the night of August 11-12, you might see a Perseid every minute or so. This year conditions are as near to perfect as can be: The waxing crescent Moon sets around 10 p.m. local time, meani ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
All-female crew in water-tank spaceflight study

Blue Origin unveils next flight, TMZ says Captain Kirk to be aboard

US must prepare now to replace International Space Station

Russian Gov't allocates $60Mln to build Soyuz for tourist flights

IRON AND ICE
Glasgow Prestwick Spaceport announces Launch Partner

NASA to launch climate change-tracking Landsat 9 satellite

DLR is developing a Launch Coordination Center

Solar electric propulsion makes Psyche spacecraft go

IRON AND ICE
NASA offers new website to look at Mars rover images

Mars habitability limited by its small size, isotope study suggests

Carbon dioxide reactor makes Martian fuel

Small stature limits Mars' ability to hold water, study finds

IRON AND ICE
China's cargo craft docks with space station core module

China brings astronauts back, advances closer to "space station era"

Chinese astronauts return to Earth after 90-day mission

China prepares to launch Tianzhou-3 cargo spacecraft

IRON AND ICE
Satellite maker Terran Orbital plans major plant in Florida

India to revise FDI policy for space sector, says ISRO chief Sivan

Adaptable optical communications to facilitate future low-earth orbit networks

SpaceX launches Starlink satellites into orbit from West Coast

IRON AND ICE
NASA adviser blasts lack of congressional action on space traffic dangers

Nine ways AR and VR used on the International Space Station

Chinese game makers vow to cut effeminacy, limit underage players

Engineering researchers develop new explanation for formation of vortices in 2D superfluid

IRON AND ICE
Cloud-spotting on a distant exoplanet

Cloudy days on exoplanets may hide atmospheric water

Webb Telescope to explore forming planetary systems

Observations in stellar factory indicates start of planet production

IRON AND ICE
Come on in, the water is superionic

Mushballs stash away missing ammonia at Uranus and Neptune

A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.