. 24/7 Space News .
IRON AND ICE
Diamonds in the sky
by Staff Writers
Onna, Japan (SPX) Sep 08, 2021

Two diamond shaped, rubble-pile asteroids have been observed near Earth, and were photographed by unmanned spacecrafts in 2018 and 2019. Scientists at OIST and Rutgers University have used a simple model normally reserved for the flow of grains to explain their unusual shape. In this image, a photograph of one of the asteroids, Bennu, is shown on the left. On the right, a simulation using the model is shown. As can be seen, the shape of the simulation matches that of Bennu.

Scientists from the Okinawa Institute of Science and Technology Graduate University (OIST) and Rutgers University have used simple concepts from granular physics to explain the curious diamond shapes of two "near Earth" asteroids.

Asteroids are rocky bodies that orbit the sun. What makes them fascinating to researchers is that they are made up of leftover materials-the matter that didn't get absorbed into the larger planets when the solar system formed, around 4.6 billion years ago. Thus, they can shed light on the early days of the solar system and the formation of the planets.

Most asteroids are trapped in the asteroid belt, a region between Jupiter and Mars. This distance from Earth makes them difficult to study. But, occasionally, an asteroid will escape and drift closer to Earth, making it possible to photograph them up close using a unmanned spacecrafts.

This is what happened with these two diamond shaped asteroids-Bennu and Ryugu. Both Bennu and Ryugu are classed as rubble-pile asteroids, which means they are made up of many smaller pieces of rocky material that are loosely held together by gravity. Essentially, they're just grains that interact with each other, like the sand on our beaches.

"Previous models have attributed these diamond shapes to the forces caused by the rotation, which resulted in material being driven from the poles to the equator. But when the asteroids were simulated using these models, the shape was flattened or asymmetric rather than diamond, so we knew something wasn't right," explained Dr. Tapan Sabuwala, lead author of the paper published in Granular Matter and researcher in OIST's Fluid Mechanics Unit.

"We found that these models were missing a key ingredient, the deposition of material. And a simple granular physics model, normally used for the deposition of grains like sand or sugar, could predict the observed shape."

Imagine pouring sand or sugar through a funnel. A cocktail of different forces will ensure that it forms a conical pile (like a party hat). Granular physicists can predict the shape of the pile based on the different forces that act on the grains. Dr. Sabuwala, alongside Professor Pinaki Chakraborty who leads the Unit and Professor Troy Shinbrot from Rutgers University, transferred these ideas to the asteroids.

Dr. Sabuwala explained how, on these asteroids, gravity is oriented differently compared to that experienced by a sandpile on the beach. "We had to factor this into our model, alongside the fact that the asteroid's rotation also plays a significant role," he said.

So, instead of the conical shape seen in the accumulation of grains on Earth, the forces at work on the asteroids produced diamond shapes. The centrifugal force, caused by rotation, decreased near the poles of the asteroids, causing material to accumulate there, and resulting in their distinctive elevated appearance.

Another important distinction of this model (when compared to previous ones) is that it suggests that these rubble-pile asteroids did not start as a sphere and deform into a diamond shape. Rather, the accumulation of debris caused the diamond shape to form very early on in the formation of the asteroid, and any subsequent reshaping was minimal. Furthermore, the notion that the diamond shapes were cast during the early stages of the asteroid formation, while at odds with previous models, is consistent with recent observations.

The researchers went on to show the accuracy of this model through simulations and found that the simulated asteroids formed the distinctive diamond shape, further supporting their theory.

"We have used simple concepts of how grains flow to explain how these asteroids assumed their curious shapes," said Professor Chakraborty. "That simple ideas can illuminate complex problems is, to us, perhaps the most delightful aspect of this work."

Research Report: "Bennu and Ryugu: Diamonds in the sky"


Related Links
Okinawa Institute of Science and Technology Graduate University
Asteroid and Comet Mission News, Science and Technology


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


IRON AND ICE
Planetary radar observes 1,000th near-earth asteroid since 1968
Pasadena CA (JPL) Sep 07, 2021
Seven days after this historic milestone, a massive antenna at NASA's Deep Space Network Goldstone complex imaged another, far larger object. On Aug. 14, 2021, a small near-Earth asteroid (NEA) designated 2021 PJ1 passed our planet at a distance of over 1 million miles (about 1.7 million kilometers). Between 65 and 100 feet (20 and 30 meters) wide, the recently discovered asteroid wasn't a threat to Earth. But this asteroid's approach was historic, marking the 1,000th NEA to be observed by planeta ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

IRON AND ICE
German ESA astronaut Matthias Maurer is ready for his first ISS mission - 'Cosmic Kiss'

Dates set for Space Station change of command as Franco-German relations awarded Media prize

Safeguarding clean water for spaceflight missions

Next generation of Orion spacecraft in production for future Artemis missions

IRON AND ICE
NASA awards launch services contract for GOES-U Mission

DLR agrees cooperation with Spanish start-up Pangea Aerospace

Winds delay South Australian launch attempt

Space industry grapples with COVID-19-related oxygen fuel shortage

IRON AND ICE
NASA's Perseverance rover collects puzzle pieces of Mars' history

Buttes on Mars may serve as radiation shelters

NASA's Perseverance rover collects first rock sample

Mars rocks collected by Perseverance boost case for ancient life

IRON AND ICE
Space exploration priority of nation's sci-tech agenda

New extravehicular pump ensures stable operation of China's space station

Chinese astronauts out of spacecraft for second time EVA

China's astronauts make spacewalk to upgrade robotic arm

IRON AND ICE
China launches Zhongxing-9B satellite

Hughes and OneWeb announce agreements for low earth Orbit satellite service in US and India

Orbit MPT30-Ku 12" Airborne SATCOM Terminal receives Intelsat FlexAir for government qualification

Eutelsat completes OneWeb equity investment

IRON AND ICE
China develops sustainable development satellite

Space junk traffic dangers to be tackled by first-of-its-kind research centre in UK

D-Orbit UK signs contract with ESA for development of debris removal technology

Global computing's carbon footprint is bigger than previously estimated

IRON AND ICE
Earthlike planets in other solar systems? Look for moons

Antennas searching for ET threatened by wildfire

The first cells might have used temperature to divide

Cold planets exist throughout our Galaxy, even in the Galactic bulge

IRON AND ICE
A few steps closer to Europa: spacecraft hardware makes headway

Juno joins Japan's Hisaki satellite and Keck Observatory to solve "energy crisis" on Jupiter

Hubble finds first evidence of water vapor on Ganymede

NASA Awards Launch Services Contract for the Europa Clipper Mission









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.