. | . |
Deep sea vents had ideal conditions for origin of life by Staff Writers London, UK (SPX) Nov 05, 2019
By creating protocells in hot, alkaline seawater, a UCL-led research team has added to evidence that the origin of life could have been in deep-sea hydrothermal vents rather than shallow pools. Previous experiments had failed to foster the formation of protocells - seen as a key stepping stone to the development of cell-based life - in such environments, but the new study, published in Nature Ecology and Evolution, finds that heat and alkalinity might not just be acceptable, but necessary to get life started. "There are multiple competing theories as to where and how life started. Underwater hydrothermal vents are among most promising locations for life's beginnings - our findings now add weight to that theory with solid experimental evidence," said the study's lead author, Professor Nick Lane (UCL Genetics, Evolution and Environment). Deep under the Earth's seas, there are vents where seawater comes into contact with minerals from the planet's crust, reacting to create a warm, alkaline (high on the pH scale) environment containing hydrogen. The process creates mineral-rich chimneys with alkaline and acidic fluids, providing a source of energy that facilitates chemical reactions between hydrogen and carbon dioxide to form increasingly complex organic compounds. Some of the world's oldest fossils, discovered by a UCL-led team, originated in such underwater vents. Scientists researching the origins of life have made great progress with experiments to recreate the early chemical processes in which basic cell formations would have developed. The creation of protocells has been an important step, as they can be seen as the most basic form of a cell, consisting of just a bilayer membrane around an aqueous solution - a cell with a defined boundary and inner compartment. Previous experiments to create protocells from naturally-occurring simple molecules - specifically, fatty acids - have succeeded in cool, fresh water, but only under very tightly controlled conditions, whereas the protocells have fallen apart in experiments in hydrothermal vent environments. The study's first author, Dr Sean Jordan (UCL Genetics, Evolution and Environment), said he and his colleagues identified a flaw in the previous work: "Other experiments had all used a small number of molecule types, mostly with fatty acids of the same size, whereas in natural environments, you would expect to see a wider array of molecules." For the current study, the research team tried creating protocells with a mixture of different fatty acids and fatty alcohols that had not previously been used. The researchers found that molecules with longer carbon chains needed heat in order to form themselves into a vesicle (protocell). An alkaline solution helped the fledgling vesicles keep their electric charge. A saltwater environment also proved helpful, as the fat molecules banded together more tightly in a salty fluid, forming more stable vesicles. For the first time, the researchers succeeded at creating self-assembling protocells in an environment similar to that of hydrothermal vents. They found that the heat, alkalinity and salt did not impede the protocell formation, but actively favoured it. "In our experiments, we have created one of the essential components of life under conditions that are more reflective of ancient environments than many other laboratory studies," Dr Jordan said. "We still don't know where life first formed, but our study shows that you cannot rule out the possibility of deep-sea hydrothermal vents." The researchers also point out that deep-sea hydrothermal vents are not unique to Earth. Professor Lane said: "Space missions have found evidence that icy moons of Jupiter and Saturn might also have similarly alkaline hydrothermal vents in their seas. While we have never seen any evidence of life on those moons, if we want to find life on other planets or moons, studies like ours can help us decide where to look."
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |