Subscribe free to our newsletters via your
. 24/7 Space News .




DEEP IMPACT
Dartmouth researchers say a comet killed the dinosaurs
by Staff Writers
Hanover NH (SPX) Apr 05, 2013


illustration only

In a geological moment about 66 million years ago, something killed off almost all the dinosaurs and some 70 percent of all other species living on Earth. Only those dinosaurs related to birds appear to have survived. Most scientists agree that the culprit in this extinction was extraterrestrial, and the prevailing opinion has been that the party crasher was an asteroid.

Not so, say two Dartmouth researchers. Professors Jason Moore and Mukul Sharma of the Department of Earth Sciences favor another explanation, asserting that a high-velocity comet led to the demise of the dinosaurs.

Recently, asteroids have been in the headlines. On February 15, 2013, an asteroid exploded in the skies over Siberia. Later that day, another swept past the Earth in what some regard as a close call-just 17,000 miles away.

The asteroid impact theory of extinction began with discoveries by the late physicist and Nobel Laureate Luis Alvarez and his son, the geologist Walter Alvarez, a professor at the University of California, Berkeley. In 1980 they identified extremely high concentrations of the element iridium in a layer of rock known as the K-Pg (formerly called K-T) boundary. The layer marks the end of the Cretaceous period (abbreviated "K"), the epoch of the dinosaurs, and the beginning of the Paleogene period, with its notable absence of the large lizards.

While iridium is rare in the Earth's crust, it is a common trace element in rocky space debris such as asteroids. Based on the elevated levels of iridium found worldwide in the boundary layer, the Alvarezes suggested that this signaled a major asteroid strike around the time of the K-Pg boundary-about 66 million years ago. Debate surrounded their theory until 2010, when a panel of 41 scientists published a report in support of the Alvarezes' theory. The panel confirmed that a major asteroid impact had occurred at the K-Pg boundary and was responsible for mass extinctions.

The scientific community today looks to the deeply buried and partially submerged, 110-mile wide Chicxulub crater in Mexico's Yucatan as the place where the death-dealing asteroid landed. The 66-million-year age of Chicxulub, discovered in 1990, coincides with the KT boundary, leading to the conclusion that what caused the crater also wiped out the dinosaurs.

Moore and Sharma do agree with fellow scientists that Chicxulub was the impact zone, but dispute the characterization of the object from space as an asteroid. In a paper presented to the 44th Lunar and Planetary Conference on March 22, 2013, they described their somewhat controversial findings.

Moore notes that in the past geochemists toiled away, isolated from their geophysicist colleagues, each focused on his or her particular area of expertise. "There hadn't been a concerted synthesis of all the data from these two camps," says Moore. "That's what we've tried to do."

The Dartmouth duo compiled all the published data on iridium from the K-Pg boundary. They also included the K-Pg data on osmium-another element common in space rock. In sifting through all this they found a wide range of variability, so consequently kept only the figures they demonstrated to be most reliable. "Because we are bringing a fresh set of eyes into this field, we feel our decisions are objective and unbiased," says Sharma.

For example, they deleted data drawn from deep ocean cores where there were very high amounts of iridium. "We discovered that even then there was a huge variation. It was much worse in the oceans than on the continents," Sharma said. "We figured out that the oceanic variations are likely caused by preferential concentration of iridium bearing minerals in marine sediments."

In the final analysis, the overall trace element levels were much lower than those that scientists had been using for decades and being this low weakened the argument for an asteroid impact explanation. However, a comet explanation reconciles the conflicting evidence of a huge impact crater with the revised, lower iridium/osmium levels at the K-Pg boundary.

"We are proposing a comet because that conclusion hits a 'sweet spot.' Comets have a lower percentage of iridium and osmium than asteroids, relative to their mass, yet a high-velocity comet would have sufficient energy to create a 110-mile-wide crater," says Moore. "Comets travel much faster than asteroids, so they have more energy on impact, which in combination with their being partially ice means they are not contributing as much iridium or osmium."

Moore attributes much of the early resistance to a comet impact theory to a lack of knowledge about comets in general. "We weren't certain whether they were dirty snowballs or icy dirt balls," he says. "Today, we are inclined toward the icy dirt ball description."

Comet composition and physical structure were unknown, but with the advent of NASA missions to comets like "Deep Impact" in 2010, a much larger database has been developed. "We now have a much better understanding of what a comet may be like and it is still consistent with the K-Pg boundary data we are seeing," Moore adds.

Sharma says that, "In synthesizing the data generated by two very disparate fields of research-geochemistry and geophysics-we are now 99.9 percent sure that what we are dealing with is a 66-million-year-old comet impact-not an asteroid."

.


Related Links
Dartmouth College
Asteroid and Comet Impact Danger To Earth - News and Science






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








DEEP IMPACT
CU study provides new evidence ancient asteroid caused global firestorm on Earth
Boulder CO (SPX) Mar 29, 2013
A new look at conditions after a Manhattan-sized asteroid slammed into a region of Mexico in the dinosaur days indicates the event could have triggered a global firestorm that would have burned every twig, bush and tree on Earth and led to the extinction of 80 percent of all Earth's species, says a new University of Colorado Boulder study. Led by Douglas Robertson of the Cooperative Instit ... read more


DEEP IMPACT
Pre-existing mineralogy may survive lunar impacts

Lunar cycle determines hunting behaviour of nocturnal gulls

Ultraviolet spectrograph observes mercury and hydrogen in GRAIL impact plumes

NASA's LRO Sees GRAIL's Explosive Farewell

DEEP IMPACT
Final MAVEN Instrument Integrated to Spacecraft

Used Parachute on Mars Flaps in the Wind

BusinessCom Networks Connects Mars 2013

SwRI study finds liquid water flowing above and below frozen Alaskan sand dunes, hints of a wetter Mars

DEEP IMPACT
NASA Invests in Small Business Innovative Research and Technology Proposals to Enable Future Missions

India doing excellent in space programmes: Sunita Williams

Miners shoot for the stars in tech race

Space Innovation Center Will Help Govt Agencies Launch Future Space Missions

DEEP IMPACT
Shenzhou's Shadow Crew

Shenzhou 10 sent to launch site

China's Next Women Astronauts

Shenzhou 10 - Next Stop: Jiuquan

DEEP IMPACT
First data released from the Alpha Magnetic Spectrometer

Alpha Magnetic Spectrometer Team Publishes First Findings

New crew takes express ride to space station

Soyuz Docks At Space Station Four Orbits After Launch

DEEP IMPACT
Future Looks Bright for Private US Space Ventures

Europe's next ATV resupply spacecraft enters final preparatio?ns for its Ariane 5 launch

ILS Proton Launches Satmex 8 Satellite for Satmex

When quality counts: Arianespace reaffirms its North American market presence

DEEP IMPACT
The Great Exoplanet Debate Part Four

Astronomers Anticipate 100 Billion Earth-Like Planets

The Great Exoplanet Debate

Astronomers Detect Water in Atmosphere of Distant Planet

DEEP IMPACT
Michigan Tech researcher slashes optics laboratory costs

CO2 could produce valuable chemical cheaply

Catalyst in a teacup: New approach to chemical reduction

Lasers could yield particle research tool




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement