Subscribe free to our newsletters via your
. 24/7 Space News .




EXO WORLDS
Astronomers Detect Water in Atmosphere of Distant Planet
by Staff Writers
Kamuela HI (SPX) Mar 20, 2013


One of the discovery images of the system obtained at the Keck II telescope using the adaptive optics system and NIRC2 Near-Infrared Imager. The rectangle indicates the field-of-view of the OSIRIS instrument for planet C. Credit: Image courtesy of NRC-HIA, C. Marois and Keck Observatory.

A team of international scientists using the W. M. Keck Observatory has made the most detailed examination yet of the atmosphere of a Jupiter-size planet beyond our Solar System.

According to lead author Quinn Konopacky, an astronomer with the Dunlap Institute for Astronomy and Astrophysics, University of Toronto and a former Lawrence Livermore National Laboratory (LLNL) postdoc, "We have been able to observe this planet in unprecedented detail because of Keck Observatory's advanced instrumentation, our ground-breaking observing and data processing techniques, and because of the nature of the planetary system." The paper appears online March 14th in Science Express, and March 22nd in the journal Science.

"This is the sharpest spectrum ever obtained of an extrasolar planet," said co-author Bruce Macintosh, an astronomer at LLNL. "This shows the power of directly imaging a planetary system-the exquisite resolution afforded by these new observations has allowed us to really begin to probe planet formation."

The team, using the OSIRIS instrument fitted on the mighty Keck II telescope on the summit of Mauna Kea, Hawaii, has uncovered the chemical fingerprints of specific molecules, revealing a cloudy atmosphere containing water vapor and carbon monoxide. "With this level of detail," says coauthor Travis Barman, an astronomer at the Lowell Observatory, "we can compare the amount of carbon to the amount of oxygen present in the atmosphere, and this chemical mix provides clues as to how the planetary system formed."

There has been uncertainty about how planets in other solar systems formed, with two leading models, called core accretion and gravitational instability. When stars form, they are surrounded by a planet-forming disk. In the first scenario, planets form gradually as solid cores slowly grow big enough to start absorbing gas from the disk. In the latter, planets form almost instantly as parts of the disk collapse on themselves. Planetary properties, like the composition of a planet's atmosphere, are clues as to whether a system formed according to one model or the other.

Although the planet's atmosphere shows clear evidence of water vapor, that signature is weaker than would be expected if the planet shared the composition of its parent star. Instead, the planet has a high ratio of carbon to oxygen-a fingerprint of its formation in the gaseous disk tens of millions of years ago. As the gas cooled with time, grains of water ice form, depleting the remaining gas of oxygen. Planetary formation began when ice and solids collected into planetary cores-very similar to how our solar system formed.

"Once the solid cores grew large enough, their gravity quickly attracted surrounding gas to become the massive planets we see today," said Konopacky. "Since that gas had lost some of its oxygen, the planet ends up with less oxygen and less water than if it had formed through a gravitational instability."

The planet is one of four gas giants known to orbit a star called HR 8799, 130 light-years from Earth. The authors and their collaborators previously discovered this planet, designated HR 8799c, and its three companions back in 2008 and 2010. Unlike most other planetary systems, whose presence is inferred by their effects on their parent star, the HR8799 planets can be individually seen.

"We can directly image the planets around HR 8799 because they are all large, young, and very far from their parent star. This makes the system an excellent laboratory for studying exoplanet atmospheres," said coauthor Christian Marois, an astronomer at the National Research Council of Canada and another former LLNL postdoc. "Since its discovery, this system just keeps on surprising us."

Although the planet does have water vapor, it's incredibly hostile to life-like Jupiter, it has no solid surface, and it has a temperature of more than a thousand degrees Fahrenheit as it glows with the energy of its original formation. Still, this discovery provides clues as to the possibility of other Earth-like planets in other solar systems. "The fact that the HR8799 giant planets may have formed the same way our own giant planets did is a good sign-that same process also made the rocky planets close to the Sun," said Dr. Macintosh.

The HR 8799 four planet system:
All four planets are more massive than any in our Solar System, with masses three to seven times that of Jupiter. Their orbits are similarly large when compared to our system. The system is believed to be young, of the order of 30 million years. HR 8799c orbits 40 times farther from its parent star than the Earth orbits from the Sun; in our Solar System that would put it beyond the realm of Neptune.

The OSIRIS instrument:
The team analyzed the distant giant's atmosphere using a high-resolution imaging spectrograph called OSIRIS. Just as Keck's adaptive optics technology gives astronomers a sharp image of HR 8799c, OSIRIS enables an extremely detailed analysis of the spectrum of the light from the planet-much more detailed than ever before-and allows astronomers to separate the star's light from the planet's. This in turn provides a more detailed understanding of the composition of the gas giant's atmosphere.

The telescope's adaptive optics system corrects for distortion caused by the Earth's atmosphere, making the infrared view through Keck II sharper than through the Hubble Space Telescope.

.


Related Links
Keck Observatory
Lands Beyond Beyond - extra solar planets - news and science
Life Beyond Earth






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








EXO WORLDS
Water signature in distant planet shows clues to its formation
Livermore CA (SPX) Mar 19, 2013
A team of international scientists including a Lawrence Livermore National Laboratory astrophysicist has made the most detailed examination yet of the atmosphere of a Jupiter-size like planet beyond our solar system. The finding provides astrophysicists with additional insight into how planets are formed. "This is the sharpest spectrum ever obtained of an extrasolar planet," said co- ... read more


EXO WORLDS
NASA's LRO Sees GRAIL's Explosive Farewell

Amazon's Bezos recovers Apollo 11 engines

Leaping Lunar Dust

Lunar Orbiter Image Recovery Project Seeks Public Support To Retrieve Apollo Era Moon Images

EXO WORLDS
Sun in the Way Will Affect Mars Missions in April

ChemCam data abundant at Planetary Conference

Los Alamos science sleuth on the trail of a Martian mystery

Curiosity Rover Exits 'Safe Mode'

EXO WORLDS
NASA Voyager Status Update on Voyager 1 Location

Voyager 1 has entered a new region of space

NASA denies report that Voyager left solar system

Reproduction In Zero Gravity

EXO WORLDS
Shenzhou 10 - Next Stop: Jiuquan

China's fourth space launch center to be in use in two years

China to launch new manned spacecraft

Woman expected again to join next China crew roster

EXO WORLDS
ESA seeks innovators for orbiting laboratory

New ISS crew prepares for launch

Space crew returns to Earth from ISS

Canadian commands space station for first time

EXO WORLDS
Sea Launch and EchoStar Reach Preliminary Agreement for Launch Services

Estonia's student cubesat satellite is ready for the next Vega launch

Vega receives its upper stage as the next mission's two primary passengers land in French Guiana

Grasshopper Successfully Completes 80M Hover Slam

EXO WORLDS
Astronomers Detect Water in Atmosphere of Distant Planet

Distant planetary system is a super-sized solar system

Water signature in distant planet shows clues to its formation

The Great Exoplanet Debate

EXO WORLDS
Smartphone app turns home drone into spacecraft

Scientists claim new glasses-free 3D for cellphone

NASA Awards Astrotech Contract For SMAP Spacecraft Processing

Videogame power harnessed for positive goals




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement