. 24/7 Space News .
Curious Skeletons Found In Search For Perfect Cytoskeletons

Cytoskeletons of human endothelial cells glow green in this immunofluorescent micrograph. The filaments meet in triangular structures resembling a geodesic dome -- an example of tensegrity. NASA Science Image

Hunstville - June 25, 2002
Sculptor Kenneth Snelson's "Needle Tower" is a fragile-looking thing. Criss-crossing rods suspended by taut wires soar perilously upward 20 meters high. Surely it ought to crumble or fall over. Yet it doesn't. When the wind blows, the Needle Tower bends, not breaks. When someone shoves it, it shoves back. The tower is lightweight, strong and curiously beautiful.

Just like the skeletons of cells.

That's right, cells have skeletons. They're not made of calcium like the bones that rattle on Halloween. Cell skeletons--biologists call them cytoskeletons--consist of protein molecules arranged into chains. Cytoskeletons give cells their shape, help cells move, and hold the nucleus in place. Like Snelson's sculptures, cytoskeletons have tensegrity--short for tensional integrity. They balance compression with tension, and yield to forces without breaking. In the Needle Tower, the wires carry tension and the rods bear compression. In a cytoskeleton, protein chains--some thin, some thick and some hollow--take the place of wires and rods. Linked together they form a stable, but flexible, structure.

NASA is interested in cytoskeletons because cytoskeletons respond to gravity. Weight can provide both tension and compression. But what happens (during space travel, for example) when weight vanishes? Do cells behave differently when their cytoskeletons relax?

Harvard cell biologist Don Ingber is a leader among researchers who have been working to find out.

"The cytoskeleton perceives gravity--or any force-- through special proteins known as integrins, which poke through the cell's surface membrane," explains Ingber. Inside the cell, they're hooked to the cytoskeleton. Outside, they latch onto a framework known as the extracellular matrix--a fibrous scaffolding to which cells are anchored in our bodies.

Ingber and his colleagues have shown that when integrins move, the cytoskeleton stiffens. They did it by coating small magnetic beads, about 1 to 10 microns in size, with special molecules that bind to integrins. They attached the beads to the integrins and then applied a magnetic field.

"The beads turned and tried to align with the field, just like a compass needle would want to align with the earth's magnetic field," explains Ingber. The beads twisted the integrins and, in turn, tweaked the cytoskeleton. As more stress was applied, the cytoskeleton became stiffer and stiffer. In fact, it become so stiff that the beads couldn't be turned much past a few degrees!

Tugging on integrins not only caused the cytoskeleton to stiffen, it also activated certain genes. "Activating a gene" means coaxing a gene to generate RNA and proteins. That's important because proteins are little messages that signal the cell to take action. Tickling the cytoskeleton, it seems, can make cells switch between different genetic programs.

Even before the magnetic bead experiment, Ingber's group at Harvard had already discovered a link between cell geometry and cell behavior. In one experiment they forced living cells to take on different shapes--spherical or flattened, square or round--by placing them on tiny adhesive islands of extracellular matrix. Cells that were flat and stretched tended to divide. Cells that were round and cramped tended to die.

Says Ingber: "Mechanical restructuring of the cell and cytoskeleton apparently tells the cell what to do."

Very flat cells with taut cytoskeletons somehow sense that more cells are needed--to cover a cut, for example. Rounder, cramped cells might sense an overpopulation problem and decide it's time to die and make room for others. In either case, they are responding to a control system in which the shape-shifting cytoskeleton serves as a switching mechanism.

The potential implications of this research are vast -- and not limited to space travel. It has already led to a prospective cancer treatment based on changes in cell shape. And it could provide new treatments for osteoporosis, cardiac disease, lung problems and developmental abnormalities. Every tissue in the body, says Ingber, has some disease that results from cells responding abnormally to mechanical forces.

"By pursuing the question of [how cells sense] gravity we've uncovered entirely new aspects of cell regulation."

Ingber believes that tensegrity is a core organizing principle of the entire physical world. Self-stabilizing structures form spontaneously at every scale -- cytoskeletons are merely one example.

Another would be spherical carbon molecules called "BuckyBalls" that look like atomic soccer balls. Clay molecules also arrange themselves into tensegrity patterns that some researchers think harbored the first microscopic life forms on Earth. Even the universe itself, with its black holes (compression) and gravitationally linked galaxies (tension), may be a tensegrity structure.

"I gave a talk once at NASA on evolutionary biology," he recalls. "The last slide of my talk was a picture of the universe: super clusters of galaxies. Next to it was a one of capillary cells in a dish, formed into networks. The two pictures looked identical."

Related Links
More Pixs and Links
SpaceDaily
Search SpaceDaily
Subscribe To SpaceDaily Express



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Building Computers That Are Lightning Fast
Toronto - Jun 25, 2002
Researchers at University of Toronto have discovered a new technique to form tiny perfect crystals that have high optical quality, a finding that could usher in a new era of ultra-fast computing and communication using photons instead of electrons.







  • Marshall Center Engineers Share Secrets Of Chandra's Darkness-Dodging Orbit
  • SDL Delivers Low-Cost Growth Chamber For ISS To Russians
  • Gardens in space
  • Just Feed 'Em Sludge

  • Remains Of A Planet Still Born Remain Scarred In Time
  • Ohio Scientist's Proposal Is Out of This World
  • SwRI Kicks Off Mars Initiative In Support Of Expanding NASA Program
  • NASA Selects 28 Scientists For Mars Rover Mission

  • Atlas 3 Picks Up Martian Loiter For 2005 Window
  • Sea Launch Sails With PanAmSat Bird For June 15 Launch
  • Boeing Delta IV Stands Ready On Launch Pad
  • Japan's H2A Has No Commercial Customers

  • ESA Selects New Earth-Observation Missions
  • Around The World In 96 Hours
  • Climate Scientist Tailor The News For Resource Managers
  • DigitalGlobe Commences Full Commercial Operations

  • Pluto Probe Design Checks Out As Ready To Build
  • Congress Set To Defy White House Over Pluto Probe
  • Hubble Hunts Down Odd Couples At The Fringes Of Our Solar System
  • Planetary Society to Congress: Restore Pluto and Europa Missions

  • Gamma-Ray Burst Mystery Solved: Exploding Stars The Culprit
  • NASA Ames Astrobiology Explorer Telescope Chosen For Feasibility Study
  • Astronomers Link X-Ray Flashes To Gamma-Ray Bursts
  • Energy Disappears High In Atmosphere, Scientists Say

  • Moon and Earth Formed out of Identical Material
  • Lunar Soil Yields Evidence About Sun's Dynamic Workings
  • Unique tasks for SMART-1 in exploring the Moon
  • NASA Seeks Berth On India's Moon Mission

  • Qualcomm Demonstrates Transportation Security Technology
  • GPS Brings Real Time Tracking To Australian Logistics
  • Space Station Using GPS In Attitude Control
  • Galileo At GNSS

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement