. 24/7 Space News .
TIME AND SPACE
Controlling charged molecules with quantum logic
by Staff Writers
Washington DC (SPX) May 11, 2017


This animation shows the basics steps in a new NIST technique for controlling the quantum properties of individual charged molecules, or molecular ions. The method borrows a "quantum logic" approach from an experimental NIST atomic clock. The new method can be used to control many types of molecules and has potential applications in quantum information processing and other fields.

National Institute of Standards and Technology (NIST) physicists have solved the seemingly intractable puzzle of how to control the quantum properties of individual charged molecules, or molecular ions. The solution is to use the same kind of "quantum logic" that drives an experimental NIST atomic clock.

The new technique achieves an elusive goal, controlling molecules as effectively as laser cooling and other techniques can control atoms. Quantum control of atoms has revolutionized atomic physics, leading to applications such as atomic clocks. But laser cooling and control of molecules is extremely challenging because they are much more complex than atoms.

The NIST technique still uses a laser, but only to gently probe the molecule; its quantum state is detected indirectly. This type of control of molecular ions - several atoms bound together and carrying an electrical charge - could lead to more sophisticated architectures for quantum information processing, amplify signals in basic physics research such as measuring the "roundness" of the electron's shape, and boost control of chemical reactions.

The research is described in the May 11 issue of Nature and was performed in the NIST Boulder group that demonstrated the first laser cooling of atomic ions in 1978.

"We developed methods that are applicable to many types of molecules," NIST physicist James Chinwen Chou said. "Whatever trick you can play with atomic ions is now within reach with molecular ions. Now the molecule will 'listen' to you-asking, in effect, 'What do you want me to do?'"

"This is comparable to when scientists could first laser cool and trap atoms, opening the floodgates to applications in precision metrology and information processing. It's our dream to achieve all these things with molecules," Chou added.

Compared to atoms, molecules are more difficult to control because they have more complex structures involving many electronic energy levels, vibrations and rotations. Molecules can consist of many different numbers and combinations of atoms and be as large as DNA strands more than a meter long.

The NIST method finds the quantum state (electronic, vibrational, and rotational) of the molecular ion by transferring the information to a second ion, in this case an atomic ion, which can be laser cooled and controlled with previously known techniques.

Borrowing ideas from NIST's quantum logic clock, the researchers attempt to manipulate the molecular ion and, if successful, set off a synchronized motion in the pair of ions. The manipulation is chosen such that it can only trigger the motion if the molecule is in a certain state. The "yes" or "no" answer is signaled by the atomic ion. The technique is very gentle, indicating the molecule's quantum states without destroying them.

"The molecule only jiggles if it is in the right state. The atom feels that jiggle and can transfer the jiggle into a light signal we can pick up," senior author Dietrich Leibfried said. "This is like Braille, which allows people to feel what is written instead of seeing it. We feel the state of the molecule instead of seeing it and the atomic ion is our microscopic finger that allows us to do that."

"Moreover, the method should be applicable to a large group of molecules without changing the setup. This is part of NIST's basic mission, to develop precision measurement tools that maybe other people can use in their work," Leibfried added.

To perform the experiment, NIST researchers scavenged old but still functional equipment, including an ion trap used in a 2004 quantum teleportation experiment. They also borrowed laser light from an ongoing quantum logic clock experiment in the same lab.

The researchers trapped two calcium ions just a few millionths of a meter apart in a high-vacuum chamber at room temperature. Hydrogen gas was leaked into the vacuum chamber until one calcium ion reacted to form a calcium hydride (CaH+) molecular ion made of one calcium ion and one hydrogen atom bonded together.

Like a pair of pendulums that are coupled by a spring, the two ions can develop a shared motion because of their physical proximity and the repulsive interaction of their electrical charges. The researchers used a laser to cool the atomic ion, thereby also cooling the molecule to the lowest-energy state. At room temperature, the molecular ion is also in its lowest electronic and vibrational state but remains in a mixture of rotational states.

The researchers then applied pulses of infrared laser light-tuned to prevent changes to the ions' electronic or vibrational states-to drive a unique transition between two of more than 100 possible rotational states of the molecule.

If this transition occurred, one quantum of energy was added to the two ions' shared motion. Researchers then applied an additional laser pulse to convert the change in the shared motion into a change in the atomic ion's internal energy level. The atomic ion then started scattering light, signaling that the molecular ion's state had changed and it was in the desired target state.

Subsequently, researchers can then transfer angular momentum from the light emitted and absorbed during laser-induced transitions to, for example, orient the molecule's rotational state in a desired direction.

The new techniques have a wide range of possible applications. Other NIST scientists at JILA previously used lasers to manipulate clouds of specific charged molecules in certain ways, but the new NIST technique could be used to control many different types of larger molecular ions in more ways, Chou said.

Molecular ions offer more options than atomic ions for storing and converting quantum information, Chou said. For example, they could offer more versatility for distributing quantum information to different types of hardware such as superconducting components.

The method could also be used to answer deep physics questions such as whether fundamental "constants" of nature change over time. The calcium hydride molecular ion has been identified as one candidate for answering such questions. In addition, for measurements of the electron's electric dipole moment (a quantity indicating the roundness of the particles charge distribution), the ability to precisely control all aspects of hundreds of ions at the same time would boost the strength of the signal that scientists want to measure, Chou said.

Paper: C.W. Chou, C. Kurz, D.B. Hume, P.N. Plessow, D.R. Leibrandt, and D. Leibfried. 2017. Preparation and coherent manipulation of pure quantum states of a single molecular ion. Nature. May 11.

TIME AND SPACE
Researchers develop transistors that can switch between 2 stable energy states
Champaign IL (SPX) May 11, 2017
Engineers are unveiling an upgrade to the transistor laser that could be used to boost computer processor speeds - the formation of two stable energy states and the ability to switch between them quickly. Modern computers are limited by a delay formed as electrons travel through the tiny wires and switches on a computer chip. To overcome this electronic backlog, engineers would like to dev ... read more

Related Links
National Institute of Standards and Technology
Understanding Time and Space


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
12 Scientist-Astronaut Candidates Graduate at Embry-Riddle Through Project PoSSUM

Students Taste Sweet Smell of Success in Culinary Challenge

Honeywell And Paragon To Create Life Support Technology For Future NASA Space Missions

Elon Musk teases future plans at TED

TIME AND SPACE
Reaction Engines begins construction of UK rocket engine test facility

Arianespace orbits telecom satellites for Brazil and South Korea

Strike-delayed European rocket launch to go ahead

Test site for ESA-backed airbreathing engine

TIME AND SPACE
NASA Rover Curiosity Samples Active Linear Dune on Mars

Is Anything Tough Enough to Survive on Mars

Japan aims to uncover how moons of Mars formed

Several drives put opportunity closer to 'Perseverance Valley'

TIME AND SPACE
China to conduct several manned space flights around 2020

Reach for the Stars: China Plans to Ramp Up Space Flight Activity

China's cargo spacecraft completes in-orbit refueling

China courts international coalition set up to promote space cooperation

TIME AND SPACE
Allied Minds' portfolio company BridgeSat raises $6 million in Series A financing

Blue Sky Network Targets Key Markets For Iridium SATCOM Solutions

How Outsourcing Your Satellite Related Services Saves You Time and Money

ViaSat-2 Satellite to Launch on June 1

TIME AND SPACE
Researchers develop eco-friendly 4-in-1 catalyst

Fabrication technology in the fourth dimension

First result from Jefferson Lab's upgraded CEBAF opens door to exploring universal glue

Researchers develop recycling for carbon fiber composites

TIME AND SPACE
Lasers shed light on the inner workings of the giant larvacean

SOFIA Confirms Nearby Planetary System Is Similar to Our Own

Research Center A Hub For Origins of Life Studies

Nearby Star Confirmed as Good Model of Our Early Solar System

TIME AND SPACE
The PI's Perspective: No Sleeping Back on Earth!

ALMA investigates 'DeeDee,' a distant, dim member of our solar system

Nap Time for New Horizons

Hubble spots auroras on Uranus









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.