. | . |
Common household cleaner can boost effort to harvest fusion energy on Earth by Staff Writers Plainsboro NJ (SPX) Jan 13, 2022
Scientists have found that adding a common household cleaning agent - the mineral boron contained in such cleaners as Borax - can vastly improve the ability of some fusion energy devices to contain the heat required to produce fusion reactions on Earth the way the sun and stars do. Physicists at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) working with Japanese researchers, made the observation on the Large Helical Device (LHD) in Japan, a twisty magnetic facility that the Japanese call a "heliotron." The results demonstrated for the first time a novel regime for confining heat in facilities known as stellarators, similar to the heliotron. The findings could advance the twisty design as a blueprint for future fusion power plants.
Higher confinement "We could see this effect very clearly," said PPPL physicist Federico Nespoli, lead author of a paper that detailed the process in the journal Nature Physics. "The more power we put into the plasma the bigger the increase in heat and confinement, which would be ideal in real reactor conditions." Said David Gates, a principal research physicist at PPPL who heads the Advanced Projects Department that oversaw the work: "I am very excited about these excellent results that Federico has written up in this important paper about our collaborations with the team on the Large Helical Device. When we launched this project - the LHD Impurity Powder Dropper - in 2018 we had hopes that there might be an effect on energy confinement. The observations are even better than we expected with turbulence suppression across a large fraction of the plasma radius. I am very grateful to our Japanese colleagues for giving us the opportunity for our team to participate in these experiments." The findings also delighted Japanese researchers. "We are very pleased and excited to get these results," said Masaki Osakabe, executive director of the LHD project and science adviser for nuclear fusion research for MEXT, the Japanese ministry responsible for nuclear power. "We are also honored to be collaborators with PPPL," Osakabe said. "The findings revealed with this collaboration will provide a nice tool to control the high-performance plasma in a fusion reactor."
Promising concept Fusion combines light elements in the form of plasma - the hot, charged state of matter composed of free electrons and atomic nuclei, or ions, that makes up 99 percent of the visible universe - to release massive amounts of energy. Tokamaks and stellarators are the principal magnetic designs for scientists seeking to harvest safe, clean and virtually limitless fusion power to generate fusion energy for humanity. Although boron has long been used to condition walls and improve confinement in tokamaks, scientists have not previously seen, "a widespread turbulence reduction and temperature increase like the one reported in this article," according to the paper. Moreover, absent from the observations were damaging bursts of heat and particles, called edge localized modes (ELMs), that can occur in tokamaks and stellarators during high-confinement, or H-mode, fusion experiments. The remarkable heat and confinement improvement in LHD plasma may have resulted from the reduction of what is called the ion temperature gradient (ITG) instability, the paper said, which produces turbulence that causes plasma to leak from confinement. The reduction of turbulence contrasts with a type of heat loss called "neoclassical transport," the other main cause of particles escaping from stellarator confinement.
New round Additional goals include assessing the ability of boron to improve plasma performance during steady-state LHD operation, which is capable of extremely long plasma discharges of up to one hour. Such experiments could produce fresh evidence of the value of the stellarator design going forward.
Research Report: "Observation of a reduced-turbulence regime with boron powder injection in a stellarator"
Seeing the plasma edge of fusion experiments in new ways with artificial intelligence Boston MA (SPX) Jan 06, 2022 To make fusion energy a viable resource for the world's energy grid, researchers need to understand the turbulent motion of plasmas: a mix of ions and electrons swirling around in reactor vessels. The plasma particles, following magnetic field lines in toroidal chambers known as tokamaks, must be confined long enough for fusion devices to produce significant gains in net energy, a challenge when the hot edge of the plasma (over 1 million degrees Celsius) is just centimeters away from the much cooler sol ... read more
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |