. 24/7 Space News .
TIME AND SPACE
Collaborative research project on quantum technology starts on the International Space Station
by Staff Writers
Mainz, Germany (SPX) Feb 04, 2022

BECCAL will allow experiments to be conducted on board the ISS using ultracold atoms for fundamental research and for the development of quantum sensors of the future

In early December 2021, the project "Development of a laser system for experiments with Bose-Einstein condensates on the International Space Station within the BECCAL payload (BECCAL-II)" commenced, with the involvement of a team of researchers led by Professor Patrick Windpassinger and Dr. Andre Wenzlawski from Johannes Gutenberg University Mainz (JGU).

In collaboration with Humboldt-Universitat zu Berlin, the Ferdinand-Braun-Institut (FBH) and Universitat Hamburg, the researchers will develop a laser system for the BECCAL experiment to study ultracold atoms on board the International Space Station (ISS).

The BECCAL experiment is a multi-user platform that will be open to numerous national and international scientists to test their ideas in practice. The platform will enable them to conduct a wide range of experiments in fields such as quantum sensing, quantum information, and quantum optics.

Transport of the BECCAL payload to ISS scheduled for early 2026

The ISS offers a unique combination of weightlessness, accessibility, and a large number of experiments. This will make it possible, among other things, to carry out high-precision experiments such as testing Einstein's equivalence principle. "Ideally, the experiments require the ultracold atom cloud to be completely free of any forces. Weightlessness permits such conditions," said Dr. Andre Wenzlawski from the Windpassinger group at Mainz University.

The BECCAL experiment is a successor to the CAL project, which has conducted numerous experiments aboard the ISS since 2018. BECCAL is intended to enhance the experimental capabilities on board the ISS, especially in the fields of precision atomic interferometry and the manipulation of atoms with detuned optical fields.

An additional improvement of the overall performance is being sought by the implementation of new technological approaches to preparing atomic ensembles. The payload is scheduled for launch in early 2026 and will directly replace the CAL apparatus in the ISS Destiny module.

In the subproject, which is funded with EUR 3.4 million, the group led by Professor Patrick Windpassinger from the Institute of Physics at JGU will work together with Universitat Hamburg to develop and realize a Zerodur-based optical splitting and switching system and implement it into the BECCAL payload. These developments will draw on the findings of numerous previous experiments conducted in microgravity conditions, such as MAIUS, QUANTUS, and KALEXUS, in all of which JGU participated.

"These experiments have allowed us to lay the technological foundations for running such an extremely complex experiment as well as to perform initial fundamental tests on the feasibility of the envisaged experiments," said Wenzlawski.

The robust laser modules necessary for the experiment are being supplied by the FBH, which is currently manufacturing 55 of the narrow-band laser sources. Humboldt-Universitat zu Berlin is coordinating the integration of these laser modules along with the optical beam splitting and switching benches into a compact overall system.

The project is being financed by the German Space Agency of the German Aerospace Center (DLR) with funding from the German Federal Ministry for Economic Affairs and Climate Action, following a resolution by the German Bundestag.


Related Links
Experimental Quantum Optics and Quantum Information JGU Institute of Physics
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
2D material in Three Dimensions
Vienna, Austria (SPX) Feb 02, 2022
The carbon material graphene has no well-defined thickness, it merely consists of one single layer of atoms. It is therefore often referred to as a "two-dimensional material". Trying to make a three-dimensional structure out of it may sound contradictory at first, but it is an important goal: if the properties of the graphene layer are to be exploited best, then as much active surface area as possible must be integrated within a limited volume. The best way to achieve this goal is to produce graph ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Northrop Grumman's 17th Resupply Mission packed with science and technology for ISS

China joins industrial design IP treaty

Astronaut hits 300 days in space, on way to break NASA record

New ISS National Laboratory tool expands visibility of ISS-related educational resources

TIME AND SPACE
Gilmour Space, SENER Aeroespacial to develop Autonomous Flight Termination System for Eris rocket

UCF lands DOD award for advance hypersonic propulsion research

NASA, SpaceX investigate Dragon capsule parachute openings

Astra Space scrubs first Florida launch a second time

TIME AND SPACE
How easy is it to turn water into oxygen on Mars

Shocked zircon find a 'one-off gift' from Mars

Predicting the efficiency of oxygen-evolving electrolysis on the Moon and Mars

Sols 3381-3382: Whence We Came

TIME AND SPACE
China Focus: China to explore lunar polar regions, mulling human landing: white paper

China to boost satellite services, space technology application: white paper

China Focus: China to explore space science more: white paper

China to improve space debris monitoring: white paper

TIME AND SPACE
Sidus Space announces deal with Red Canyon Software to support LizzieSat Constellation

Protecting dark and quiet skies from satellite constellation interference

New Center for Satellite Constellation Interference

ASTRA rebrands as Orion Space Solutions

TIME AND SPACE
New lightweight material is stronger than steel

Indian Space Agency decommissions communication satellite

High level of artificial radioactivity on glaciers surprises physicists

Taiwan eases nuclear-accident food import ban from Japan

TIME AND SPACE
Puffy planets lose atmospheres, become Super Earths

Warps drive disruptions in planet formation in young solar systems

AI for Earth and Space: Call for researchers and experts

Moons may yield clues to what makes planets habitable

TIME AND SPACE
Juno and Hubble data reveal electromagnetic 'tug-of-war' lights up Jupiter's upper atmosphere

Oxygen ions in Jupiter's innermost radiation belts

Ocean Physics Explain Cyclones on Jupiter

Looking Back, Looking Forward To New Horizons









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.