. 24/7 Space News .
TECH SPACE
Coding and computers help spot methane, explosives
by Staff Writers
Durham NC (SPX) Apr 18, 2016


The top image shows a typical reading from a mass spectrometer, where each line indicates the presence of a certain substance. The bottom image shows a reading from the new coded aperture, where researchers rely on computers to collapse the numerous lines into a brighter version of the image above. Image courtesy Jeff Glass, Duke University. For a larger version of this image please go here.

A modern twist on an old technology could soon help detect rogue methane leaks, hidden explosives and much more. A Duke University team is using software to dramatically improve the performance of chemical-sniffing mass spectrometers.

Conventional mass spectrometers separate compounds by giving them an electric charge and passing them through electric and/or magnetic fields. The lighter the compound, the more it bends in the field. By determining what compounds make up a given sample, these instruments can identify almost any substance.

Mass spectrometers were invented in the 1930s, and they're still typically the size of an oven or refrigerator. Inherent hurdles to miniaturization have made it difficult to use them outside of a laboratory.

But with the help of modern data analytics, researchers at Duke have demonstrated a technology using a so-called "coded aperture" that promises to shrink these devices while maintaining their performance. The advance could lead to portable mass spectrometers that could be used to detect environmental or safety hazards in the field.

The innovation is featured on the cover of the April issue of the Journal of Mass Spectrometry.

"In a typical mass spectrometer, the charged molecules pass through a thin slit, which defines your resolution," said Jeff Glass, professor of electrical and computer engineering at Duke and principal investigator for the project.

"When you try to shrink the instrument, you have to shrink the slit too. That means the number of ions (charged molecules) passing through is going to drop and you're going to lose signal intensity. We got around this issue by using a several slits, which code the ions."

Glass likens the new technology to watching a solar eclipse in grade school. Students often poke a small hole in a piece of cardboard, which acts like a lens to create an image of the eclipse on the ground. And as anyone who has ever done this knows, the smaller the hole, the better the detail of the eclipse.

But a smaller hole also makes it dimmer and harder to see. This is exactly the challenge faced when scaling down a mass spectrometer.

The solution, Glass says, is to make many tiny pinholes to create an array of eclipses, and then to use a computer to reconstruct them into a single image. This way you get the sharpness of the tiny pinhole with the brightness of a large pinhole.

The key is in knowing the pattern - or code - of the array of apertures. Thus the name of the technology, coded aperture.

"This idea was actually mentioned in a short article from 1970," said Jason Amsden, a research scientist and manager of the project. "But nobody since then has had all the parts to put it together."

The team drew on several different kinds of expertise. "Our group could do the fabrication of the microstructures, but we relied on engineering colleagues David Brady and Mike Gehm for the coding and computational aspects, and our colleagues at RTI International (in the nearby Research Triangle Park) for the electronics."

The researchers have demonstrated that their coded aperture works in a newer, more complex type of mass spectrometer created to help make the devices smaller, though not nearly as small or precise as coded apertures could make them.

Previous papers by the Duke researchers have also shown that the approach improves the performance of very simple mass spectrometers, like those used in the early days of mass spectrometry.

Their work now is focusing on trying coded apertures in different versions of mass spectrometers to determine which would be best for creating scaled down, mobile devices for field use. They are also working to show these devices can detect trace amounts of methane to spot leaks in infrastructure and various explosives to thwart terror attempts.

But the technology can also have an immediate impact in research laboratories around the world.

"This technique can improve the performance of classic mass spectrometers that already have a higher resolution than other types invented for scaling down," said Amsden. "And there are lots of them. Duke alone probably has at least 50 for medical applications. So we're hoping this can have a wide impact in the near future."

Research paper: "Compatibility of Spatially Coded Apertures with a Miniature Mattauch-Herzog Mass Spectrograph," Zachary E. Russell, Shane T. DiDona, Jason J. Amsden, Charles B. Parker, Gottfried Kibelka, Michael E. Gehm, Jeffrey T. Glass. JASMS, 2016. DOI: 10.1007/s13361-015-1323-7


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Duke University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Catalyst could make production of key chemical more eco-friendly
Providence RI (SPX) Apr 14, 2016
The world has more carbon dioxide than it needs, and a team of Brown University chemists has come up with a potential way to put some of it to good use. The researchers developed a new composite catalyst using nitrogen-rich graphene dotted with copper nanoparticles. A study, published in the journal Nano Energy, showed that the new catalyst can efficiently and selectively convert carbon dioxide ... read more


TECH SPACE
Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

Moon Mission: A Blueprint for the Red Planet

The Lunar Race That Isn't

TECH SPACE
Help keep heat on Mars Express through data mining

Ancient Mars bombardment likely enhanced life-supporting habitat

Opportunity's Devilish View from on High

Mars Longevity Champion Launched 15 Years Ago

TECH SPACE
NASA invests in 2D spacecraft, reprogrammable microorganisms

US-based cruise liner eyes China market with dedicated liner

Spanish port becomes global 'smart city' laboratory

Silicon Beach: LA tech hub where the sun always shines

TECH SPACE
Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

Has Tiangong 1 gone rogue

China's 1st space lab Tiangong-1 ends data service

TECH SPACE
Dragon and Cygnus To Meet For First Time In Space

Russian cargo ship docks successfully with space station

Russia launches cargo ship to space station

Cargo ship reaches space station on resupply run

TECH SPACE
Orbital ATK awarded major sounding rocket contract by NASA

SpaceX lands rocket on ocean platform for first time

SpaceX cargo arrives at crowded space station

Orbital ATK receives NASA order for rockets

TECH SPACE
Stars strip away atmospheres of nearby super-Earths

Cooked planets shrink due to radiation

More accurately measuring distances between planetary nebulae and Earth

New tool refines exoplanet search

TECH SPACE
Airbus wins contract for solid state recorder on NASA-ISRO SAR Mission

Brittle is better for making cement

Catalyst could make production of key chemical more eco-friendly

Graphene is both transparent and opaque to radiation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.