. 24/7 Space News .
TIME AND SPACE
"Closest black hole" system found to contain no black hole
by Staff Writers
Leuven, Belgium (SPX) Mar 03, 2022

stock illustration only

In 2020 a team led by European Southern Observatory (ESO) astronomers reported the closest black hole to Earth, located just 1000 light-years away in the HR 6819 system. But the results of their study were contested by other researchers, including by an international team based at KU Leuven, Belgium. In a paper published this week these two teams have united to report that there is in fact no black hole in HR 6819, which is instead a "vampire" two-star system in a rare and short-lived stage of its evolution.

The original study on HR 6819 received significant attention from both the press and scientists. Thomas Rivinius, a Chile-based ESO astronomer and lead author on that paper, was not surprised by the astronomy community's reception to their discovery of the black hole. "Not only is it normal, but it should be that results are scrutinised," he says, "and a result that makes the "Closest black hole" system found to contain no black holes even more so."

Rivinius and his colleagues were convinced that the best explanation for the data they had, obtained with the MPG/ESO 2.2-metre telescope, was that HR 6819 was a triple system, with one star orbiting a black hole every 40 days and a second star in a much wider orbit. But a study led by Julia Bodensteiner, then a PhD student at KU Leuven, Belgium, proposed a different explanation for the same data: HR 6819 could also be a system with only two stars on a 40-day orbit and no black hole at all. This alternative scenario would require one of the stars to be "stripped", meaning that, at an earlier time, it had lost a large fraction of its mass to the other star.

"We had reached the limit of the existing data, so we had to turn to a different observational strategy to decide between the two scenarios proposed by the two teams," says KU Leuven researcher Abigail Frost, who led the new study published in Astronomy and Astrophysics.

To solve the mystery, the two teams worked together to obtain new, sharper data of HR 6819 using ESO's Very Large Telescope (VLT) and Very Large Telescope Interferometer (VLTI). "The VLTI was the only facility that would give us the decisive data we needed to distinguish between the two explanations," says Dietrich Baade, author on both the original HR 6819 study and the new Astronomy and Astrophysics paper. Since it made no sense to ask for the same observation twice, the two teams joined forces, which allowed them to pool their resources and knowledge to find the true nature of this system.

"The scenarios we were looking for were rather clear, very different and easily distinguishable with the right instrument," says Rivinius. "We agreed that there were two sources of light in the system, so the question was whether they orbit each other closely, as in the stripped-star scenario, or are far apart from each other, as in the black hole scenario."

To distinguish between the two proposals, the astronomers used both the VLTI's GRAVITY instrument and the Multi Unit Spectroscopic Explorer (MUSE) instrument on ESO's VLT.

"MUSE confirmed that there was no bright companion in a wider orbit, while GRAVITY's high spatial resolution was able to resolve two bright sources separated by only one-third of the distance between the Earth and the Sun," says Frost. "These data proved to be the final piece of the puzzle, and allowed us to conclude that HR 6819 is a binary system with no black hole."

"Our best interpretation so far is that we caught this binary system in a moment shortly after one of the stars had sucked the atmosphere off its companion star. This is a common phenomenon in close binary systems, sometimes referred to as "stellar vampirism" in the press," explains Bodensteiner, now a fellow at ESO in Germany and an author on the new study. "While the donor star was stripped of some of its material, the recipient star began to spin more rapidly."

"Catching such a post-interaction phase is extremely difficult as it is so short," adds Frost. "This makes our findings for HR 6819 very exciting, as it presents a perfect candidate to study how this vampirism affects the evolution of massive stars, and in turn the formation of their associated phenomena including gravitational waves and violent supernova explosions."

The newly formed Leuven-ESO joint team now plans to monitor HR 6819 more closely using the VLTI's GRAVITY instrument. The researchers will conduct a joint study of the system over time, to better understand its evolution, constrain its properties, and use that knowledge to learn more about other binary systems.

As for the search for black holes, the team remains optimistic. "Stellar-mass black holes remain very elusive owing to their nature," says Rivinius. "But order-of-magnitude estimates suggest there are tens to hundreds of millions of black holes in the Milky Way alone," Baade adds. It is just a matter of time until astronomers discover them.

Research Report: "HR 6819 is a binary system with no black hole: Revisiting the source with infrared interferometry and optical integral field spectroscopy"


Related Links
European Southern Observatory
Understanding Time and Space


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


TIME AND SPACE
New detection method for quasars in the early Universe
Leiden, Netherlands (SPX) Feb 11, 2022
Astronomers from Leiden Observatory have developed a new method to find distant quasars and better distinguish them from other objects that look like them, using machine learning techniques. The research result has been accepted for publication in the journal Astronomy and Astrophysics. It is the last article to be co-authored with Maolin Zhang, the promising Leiden PhD student of Chinese origin who died in a fire at his home in 2019. A quasar is an extremely bright active center of a galaxy, powe ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

TIME AND SPACE
Space Station to host 'self-healing' quantum communications tech demo

'TechWorks' brings dreams of Jordan inventors to life

How to reach a tumbling target in space

NASA exploring ways to keep ISS afloat without Russian help: official

TIME AND SPACE
First Platforms are Retracted Ahead of Artemis I First Rollout to Launch Pad

NASA Announces Launch Options for 2022 Student Launch Competition

SpaceX launches 47 Starlink satellites from Florida

Russia stops deliveries of rocket engines to US, Roscosmos Head Says

TIME AND SPACE
Moon and Mars superoxides for oxygen farming

A River Runs Through It: Onward to the Delta

Challenges await sample-return expedition to Mars

Sols 3401-3402: Sand, Boulders and Ridges, Oh My

TIME AND SPACE
China launches seven new satellites

China's space station to host 6 astronauts by end of 2022

China establishes deep space exploration laboratory

Tiangong scheduled for completion this year

TIME AND SPACE
Airbus Ventures invests in CesiumAstro's Series B

Sidus Space teams with Aitech Systems to support LizzieSat constellation

Xplore secures $16.2M in venture funding and customer contracts

HKATG is getting ready for its Golden Bauhinia Constellation

TIME AND SPACE
NeoPhotonics offers ultra-narrow linewidth laser for LEO satellites

Scientists think an old rocket just hit the Moon going 5,800 mph

Using artificial intelligence to find anomalies hiding in massive datasets

Sanctions on Russia add to troubles facing global helium industry

TIME AND SPACE
What's happening in the depths of distant worlds?

Microscopic view on asteroid collisions could help us understand planet formation

Ice-free in icy worlds

New astrobiology research predicts life 'as we don't know it'

TIME AND SPACE
NASA starts building Europa Clipper to investigate icy, ocean moon of Jupiter

NASA begins assembly of Europa Clipper

New Horizons team puts names to the places on Arrokoth

NASA Telescope Spots Highest-Energy Light Ever Detected From Jupiter









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.