. 24/7 Space News .
ENERGY TECH
Closely spaced hydrogen atoms could facilitate superconductivity in ambient conditions
by Staff Writers
Oak Ridge TN (SPX) Feb 04, 2020

Illustration of a zirconium vanadium hydride atomic structure at near ambient conditions as determined using neutron vibrational spectroscopy and the Titan supercomputer at Oak Ridge National Laboratory. The lattice is comprised of vanadium atoms (in gold) and zirconium atoms (in white) enclosing hydrogen atoms (in red). Three hydrogen atoms are shown interacting at surprisingly small hydrogen-hydrogen atomic distances, as short as 1.6 angstroms. These smaller spacings between the atoms might allow packing significantly more hydrogen into the material to a point where it begins to superconduct.

An international team of researchers has discovered the hydrogen atoms in a metal hydride material are much more tightly spaced than had been predicted for decades - a feature that could possibly facilitate superconductivity at or near room temperature and pressure.

Such a superconducting material, carrying electricity without any energy loss due to resistance, would revolutionize energy efficiency in a broad range of consumer and industrial applications.

The scientists conducted neutron scattering experiments at the Department of Energy's Oak Ridge National Laboratory on samples of zirconium vanadium hydride at atmospheric pressure and at temperatures from -450 degrees Fahrenheit (5 K) to as high as -10 degrees Fahrenheit (250 K) - much higher than the temperatures where superconductivity is expected to occur in these conditions.

Their findings, published in the Proceedings of the National Academy of Sciences, detail the first observations of such small hydrogen-hydrogen atomic distances in the metal hydride, as small as 1.6 angstroms, compared to the 2.1 angstrom distances predicted for these metals.

This interatomic arrangement is remarkably promising since the hydrogen contained in metals affects their electronic properties. Other materials with similar hydrogen arrangements have been found to start superconducting, but only at very high pressures.

The research team included scientists from the Empa research institute (Swiss Federal Laboratories for Materials Science and Technology), the University of Zurich, Polish Academy of Sciences, the University of Illinois at Chicago, and ORNL.

"Some of the most promising 'high-temperature' superconductors, such as lanthanum decahydride, can start superconducting at about 8.0 degrees Fahrenheit, but unfortunately also require enormous pressures as high as 22 million pounds per square inch, or nearly 1,400 times the pressure exerted by water at the deepest part of Earth's deepest ocean," said Russell J. Hemley, Professor and Distinguished Chair in the Natural Sciences at the University of Illinois at Chicago.

"For decades, the 'holy grail' for scientists has been to find or make a material that superconducts at room temperature and atmospheric pressure, which would allow engineers to design it into conventional electrical systems and devices. We're hopeful that an inexpensive, stable metal like zirconium vanadium hydride can be tailored to provide just such a superconducting material."

Researchers had probed the hydrogen interactions in the well-studied metal hydride with high-resolution, inelastic neutron vibrational spectroscopy on the VISION beamline at ORNL's Spallation Neutron Source. However, the resulting spectral signal, including a prominent peak at around 50 millielectronvolts, did not agree with what the models predicted.

The breakthrough in understanding occurred after the team began working with the Oak Ridge Leadership Computing Facility to develop a strategy for evaluating the data. The OLCF at the time was home to Titan, one of the world's fastest supercomputers, a Cray XK7 system that operated at speeds up to 27 petaflops (27 quadrillion floating point operations per second).

"ORNL is the only place in the world that boasts both a world-leading neutron source and one of the world's fastest supercomputers," said Timmy Ramirez-Cuesta, team lead for ORNL's chemical spectroscopy team.

"Combining the capabilities of these facilities allowed us to compile the neutron spectroscopy data and devise a way to calculate the origin of the anomalous signal we encountered. It took an ensemble of 3,200 individual simulations, a massive task that occupied around 17% of Titan's immense processing capacity for nearly a week - something a conventional computer would have required ten to twenty years to do."

These computer simulations, along with additional experiments ruling out alternative explanations, proved conclusively that the unexpected spectral intensity occurs only when distances between hydrogen atoms are closer than 2.0 angstroms, which had never been observed in a metal hydride at ambient pressure and temperature. The team's findings represent the first known exception to the Switendick criterion in a bimetallic alloy, a rule that holds for stable hydrides at ambient temperature and pressure the hydrogen-hydrogen distance is never less than 2.1 angstroms.

"An important question is whether or not the observed effect is limited specifically to zirconium vanadium hydride," said Andreas Borgschulte, group leader for hydrogen spectroscopy at Empa. "Our calculations for the material - when excluding the Switendick limit - were able to reproduce the peak, supporting the notion that in vanadium hydride, hydrogen-hydrogen pairs with distances below 2.1 angstroms do occur."

In future experiments, the researchers plan to add more hydrogen to zirconium vanadium hydride at various pressures to evaluate the material's potential for electrical conductivity. ORNL's Summit supercomputer - which at 200 petaflops is over 7 times faster than Titan and since June 2018 has been No. 1 on the TOP500 List, a semiannual ranking of the world's fastest computing systems - could provide the additional computing power that will be required to analyze these new experiments.


Related Links
Oak Ridge National Laboratory
Powering The World in the 21st Century at Energy-Daily.com


Thanks for being there;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Monthly Supporter
$5+ Billed Monthly


paypal only
SpaceDaily Contributor
$5 Billed Once


credit card or paypal


ENERGY TECH
Electronic map reveals 'rules of the road' in superconductor
Houston TX (SPX) Dec 09, 2019
Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals the "rules of the road" for electrons both in normal conditions and in the critical moments just before the material transforms into a superconductor. In a study online this week in the American Physical Society journal Physical Review X (PRX), physicist Ming Yi and colleagues offer up a band structure map for iron selenide, a material that ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

ENERGY TECH
ISRO's Gaganyaan to facilitate space tourism

Getting around the Solar System

DLR 2020 - research for climate, mobility and the energy transition

New research launching to station aboard Northrop Grumman's 13th Resupply Mission

ENERGY TECH
Rocket Lab successfully launches U.S. spy satellite

India plans to send 50 satellite launch vehicles into orbit within next 5 years

Elon Musk drops surprise techno track

SpaceX Falcon 9 launches fourth batch of 60 Starlink satellites

ENERGY TECH
MAVEN explores Mars to understand radio interference at Earth

Mars' water was mineral-rich and salty

Russian scientists propose manned Base on Martian Moon to control robots remotely on red planet

To infinity and beyond: interstellar lab unveils space-inspired village for future Mars settlement

ENERGY TECH
China to launch more space science satellites

China's space station core module, manned spacecraft arrive at launch site

China to launch Mars probe in July

China's space-tracking vessels back from missions

ENERGY TECH
OneWeb lifts off: Next batch ready to launch

Space science investment generates income and creates jobs

Northrop Grumman breaks ground for expanded satellite manufacturing facilities in Gilbert, Arizona

US sees record year for private space sector in 2020

ENERGY TECH
UNH researchers find clues to how hazardous space radiation begins

Can wood construction transform cities from carbon source to carbon vault

Sustainable 3D-printed super magnets

"Breakthrough" 3D-printed rocket engine tests completed in Fife, Scotland

ENERGY TECH
To make amino acids, just add electricity

AI could deceive us as much as the human eye does in the search for extraterrestrials

NESSI comes to life at Palomar Observatory

For hottest planet, a major meltdown, study shows

ENERGY TECH
Seeing stars in 3D: The New Horizons Parallax Program

Looking back at a New Horizons New Year's to remember

NASA's Juno navigators enable Jupiter cyclone discovery

The PI's Perspective: What a Year, What a Decade!









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.