. 24/7 Space News .
TECH SPACE
Clearing the way for real-world applications of superhydrophobic surfaces
by Staff Writers
Espoo, Finland (SPX) Apr 15, 2016


Water droplets are rolling on a superhydrophobic surface. The repellency of a superhydrophobic surface immersed in water causes a depression in the water, and the surface under water has a silvery shine caused by a microscopic layer of air trapped between the water and the superhydrophobic surface. Image courtesy Mika Latikka, Aalto University. For a larger version of this image please go here.

In their perspective article in the journal Science, researchers from Aalto University call for consistent and standardized testing of superhydrophobic, i.e. extremely water-repellent, materials.

Agreeing on a unified testing method is needed to allow community-wide comparison between published results. This would significantly progress development of superhydrophobic materials and their transfer to commercial products in, for instance, self-cleaning and anti-icing applications.

Currently, research groups around the world use many different kinds of tests to evaluate the durability and wear of superhydrophobic materials. For example, researchers have used linear abrasion, circular abrasion, sandblasting and water jets in testing the surfaces. However, the results obtained through different methods are not comparable, which makes it hard to find the best materials for applications.

'We therefore propose that researchers should begin using a standardised method when testing the wear and durability of extremely water-repellent materials. We find that linear abrasion of the surface, for example with sandpaper, would be the best general method. It is important to specify the applied pressure, the abrasion distance and the abradant material to make sure the result is reproducible', explains Professor Robin Ras.

Benefits of the proposed method include, among other things, the easy availability of the testing materials and the simple test setup.

'Nevertheless, the wear test alone is not sufficient to determine the robustness of the superhydrophobic surface. The second step is to perform tests with water droplets to measure the water-repelling properties of the surface after wear', clarifies Tuukka Verho, who is currently preparing his doctoral dissertation.

The superhydrophobicity of a surface is often measured based on the shape of a water droplet on the surface, i.e. how completely the droplet beads up in the surface.

However, according to the authors, this so-called static contact angle does not provide enough information about the effects of wear, as water often forms almost spherical droplets even on a damaged surface, but no longer easily slides off the surface. Therefore, the authors encourage to always measure droplet mobility, for example using an inclination test.

The Aalto University researchers wish that their perspective article initiates in the research community a discussion on the evaluation of superhydrophobic surfaces.

Even though they propose linear abrasion as a primary test for all superhydrophobic materials, additional application-specific tests may be needed, for instance, to assess the laundering durability of textiles or the weather-durability of outdoor materials.

Science perspective article: "Moving superhydrophobic surfaces toward real-world applications"


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Aalto University
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
TECH SPACE
Catalyst could make production of key chemical more eco-friendly
Providence RI (SPX) Apr 14, 2016
The world has more carbon dioxide than it needs, and a team of Brown University chemists has come up with a potential way to put some of it to good use. The researchers developed a new composite catalyst using nitrogen-rich graphene dotted with copper nanoparticles. A study, published in the journal Nano Energy, showed that the new catalyst can efficiently and selectively convert carbon dioxide ... read more


TECH SPACE
Supernova iron found on the moon

Russia to shift all Lunar launches to Vostochny Cosmodrome

Lunar lava tubes could help pave way for human colony

The Moon thought to play a major role in maintaining Earth's magnetic field

TECH SPACE
Russia, Italy plan first bid to explore beneath mars surface in 2018

First light for ExoMars

First joint EU-Russian ExoMars mission to reach Mars orbit Oct 16

Help keep heat on Mars Express through data mining

TECH SPACE
NASA begins testing of revolutionary e-sail technology

Concept's success buoys Commercial Crew's path to flight

A US Department of Space

New, fast solar wind propulsion system is aim of NASA, UAH study

TECH SPACE
China begins testing Tiangong-2 space lab

Lessons learned from Tiangong 1

China launches SJ-10 retrievable space science probe

Has Tiangong 1 gone rogue

TECH SPACE
NASA to test first expandable habitat on ISS

Dragon and Cygnus To Meet For First Time In Space

Russian cargo ship docks successfully with space station

Russia launches cargo ship to space station

TECH SPACE
Orbital ATK awarded major sounding rocket contract by NASA

SpaceX lands rocket on ocean platform for first time

SpaceX cargo arrives at crowded space station

Orbital ATK receives NASA order for rockets

TECH SPACE
1917 astronomical plate has first-ever evidence of exoplanetary system

Stars strip away atmospheres of nearby super-Earths

Cooked planets shrink due to radiation

More accurately measuring distances between planetary nebulae and Earth

TECH SPACE
Cooling down the hot side of space hardware

Brittle is better for making cement

Catalyst could make production of key chemical more eco-friendly

Graphene is both transparent and opaque to radiation









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.