. | . |
Citizen scientists spot closest young brown dwarf disk yet by Staff Writers Boston MA (SPX) Jun 03, 2020
Brown dwarfs are the middle child of astronomy, too big to be a planet yet not big enough to be a star. Like their stellar siblings, these objects form from the gravitational collapse of gas and dust. But rather than condensing into a star's fiery hot nuclear core, brown dwarfs find a more zen-like equilibrium, somehow reaching a stable, milder state compared to fusion-powered stars.
Brown dwarfs are considered to be by Jennifer Chu for MIT News Office Now researchers at MIT, the University of Oklahoma, and elsewhere, with the help of citizen scientists, have identified the closest young brown dwarf with the kind of disk that could potentially form planets. The brown dwarf, named W1200-7845, is a mere 3.7 million years old and sits at a nearby 102 parsecs, or about 332 light years from Earth. At this proximity, scientists may be able to zoom in on the young system with future high-powered telescopes, to examine the earliest conditions of a brown dwarf's disk and perhaps learn more about the kind of planets brown dwarfs might support. The new system was discovered through Disk Detective, a crowdsourced project funded by NASA and hosted by Zooniverse that provides images of objects in space for the public to classify, with the aim of picking out objects that are likely stars with disks that could potentially host planets. The researchers are presenting their findings, as well as announcing a new version of the Disk Detective website, this week at the all-virtual meeting of the American Astronomical Society.
"Within our solar neighborhood" "We have multiple citizen scientists look at each object and give their own independent opinion, and trust the wisdom of the crowd to decide what things are probably galaxies and what things are probably stars with disks around them," says study co-author Steven Silverberg, a postdoc in MIT's Kavli Institute for Astrophysics and Space Research. From there, a science team including Silverberg follows up on crowd-classified disks, using more sophisticated methods and telescopes to determine if indeed they are disks, and what characteristics the disks may have. In the case of the newly discovered W1200-7845, citizen scientists first classified the object as a disk in 2016. The science team, including Silverberg and Maria Schutte, a graduate student at the University of Oklahoma, then looked more closely at the source with an infrared instrument on the Magellan 6.5-meter telescopes at Las Campanas Observatory in Chile. With these new observations, they determined that the source was indeed a disk around a brown dwarf that lived within a "moving group" - a cluster of stars that tend to move as one across the night sky. In astronomy, it's far easier to determine the age of a group of objects rather than one alone. Because the brown dwarf was part of a moving group of about 30 stars, previous researchers were able to estimate an average age for the group, about 3.7 million years old, that was likely also the age of the brown dwarf. The brown dwarf is also very close to the Earth, at about 102 parsecs away, making it the closest, young brown dwarf detected yet. For comparison, our nearest star, Alpha Centauri, is 1 parsec from Earth. "When it's this close, we consider it to be within the solar neighborhood," Schutte says. "That proximity is really important, because brown dwarfs are lower in mass and inherently less bright than other objects like stars. So the closer these objects are to us, the more detail we'll be able to see."
Looking for Peter Pan The team plans to zoom further in on W1200-7845 with other telescopes, such as ALMA, the Atacama Large Millimeter Array in Chile, comprising 66 huge radio dishes that work together as one powerful telescope to observe the universe between the radio and infrared bands. At this range and precision, the researchers hope to see the brown dwarf's disk itself, to measure its mass and radius. "A disk's mass just tells you how much stuff is in the disk, which would tell us if planet formation happens around these systems, and what sorts of planets you'd be able to produce," Silverberg says. "You could also use that data to determine what kinds of gas are in the system which would tell you about the disk's composition." In the meantime, the researchers are launching a new version of Disk Detective. In April 2019, the website went on hiatus, as its hosting platform, the popular citizen scientist portal Zooniverse, briefly retired its previous software platform in favor of an updated version. The updated platform has prompted Silverberg and his colleagues to revamp Disk Detective. The new version, launching this week, will include images from a full-sky survey, PanSTARRS, that observes most of the sky in high-resolution optical bands. "We're getting more current images with different telescopes with better spatial resolution this time around," says Silverberg, who will be managing the new site at MIT. Where the site's previous version was aimed at finding any disks around stars and other objects, the new site is designed to pick out "Peter Pan" disks - disks of gas and dust that should be old enough to have formed planets, but for some reason haven't quite yet. "We call them Peter Pan disks because they seem to never grow up," Silverberg says. The team identified its first Peter Pan disk with Disk Detective in 2016. Since then, seven others have been found, each at least 20 million years old. With the new site, they hope to identify and study more of these disks, which could help to nail down conditions under which planets, and possibly life, may form. "The disks we find will be excellent places to look for exoplanets," Silverberg says. "If planets take longer to form than we previously thought, the star they orbit will have fewer gigantic flares when the planets finally form. If the planet receives fewer flares than it would around a younger star, that could significantly impact our expectations for discovering life there."
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |